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Abstract  
In this paper we investigate how the interaction between the product and the emission 

permit markets may affect firms’ propensity to adopt cleaner technologies. The 

adoption of a cleaner technology has the direct effect of reducing the compliance cost 

of the firm, but it also involves a strategic decision, if the industry is not perfectly 

competitive. We look at this problem from both a theoretical and an experimental point 

of view. We develop a model of duopoly, in which two firms engage in quantity 

competition in the output market and behave as price takers in the permit market. 

Firms have the possibility of investing in a cleaner production technology, which is 

available on the market at some cost. We set up a dynamic game over an infinite 

horizon in order to investigate firms’ investment decisions: in each period, each firm 

decides whether to invest in the new technology or not. The stationary equilibria to this 

game crucially depend on both the cost of switching to the cleanest technology and the 

emission cap. Technology diffusion is one of the possible equilibria of the game. In 

order to test the predictions of the theory, we design and implement an “innovation 

experiment” that replicates the “innovation game”. The results of our pilot experiment 

suggest that firms’ behaviour will eventually lead to innovation diffusion. 
 

Key Words: tradable permits, technology adoption, oligopoly, laboratory experiments. 

JEL Categories: C91, L13, O30, Q28 

 
1 Introduction  

One central concern of environmental policy is how it can stimulate innovation and 

diffusion of cleaner technologies. Alternative environmental policy instruments can have 
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significantly different effects on the rate and direction of technological change. Most of 

the literature concerning the effect of environmental policy on cleaner technology 

innovation and diffusion has focused on comparing different policy approaches. There is 

an almost general agreement that market-based instruments are superior to command-

and-control regulation in this respect (Denicolò, 1999; Downing and White, 1986; Fisher 

et al. 1998, Jung et al., 1996; Milliman and Prince, 1989), though these studies provide 

different conclusions about which of these market-based policies is the most effective in 

inducing an “environmental technological change”. Nonetheless, emission trading is 

claimed to be one of the most effective instruments for pollution control, both in a static 

context and in the long run.  The theoretical arguments have led to a growing interest in 

the possible applications of this policy, both at national and international levels; this 

interest is also due to some successful applications, mainly in the US.  

Nonetheless, only a few studies have dealt with how an emission trading scheme has to 

be designed in order to induce innovation1 (Laffont and Tirole, 1996). What are the 

variables that affect firms’ technology choice under an emission trading scheme? In this work, 

we would try to answer this question, focusing on the variables that the environmental 

regulator may adjust in order to incentive polluters to shift to a cleaner technology.  

Moreover, there is little rigorous evidence concerning the ability of tradable permits to 

incentive innovation and adoption of cleaner technologies, mostly because of the scarcity 

of available data (Jaffe et al., 2002). This observation has led us to adopt the 

experimental approach to analyse firms’ technology choice. Do laboratory subjects decide 

to innovate as theory predicts? 

As it has been pointed out in some studies (Fershtman and deZeew, 1995; Montero, 

2002; Requate, 1998), considering only the allowance market may lead to biased 

conclusions, since the adoption of a cleaner technology has a direct cost-reducing effect 

internal to the firm, but also implies strategic effects arising from the interaction between 

the output and the permit markets. For this reason, we depart from the competitive 

assumption, explicitly considering the production decision in a Cournot duopoly, where 

the technology is modelled in terms of emissions per unit of output, rather than in terms 

of abatement cost. We focus on the effect of the interaction between the output and the 

permit markets on the diffusion of the new technology, i.e. we look at the conditions 
                                                 
1 For example, Laffont and Tirole (1996a and 1996b) claim that future markets of permits provide higher 
incentives to innovate than do spot markets. 
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under which one or both firms are induced to invest in a new technology and thus on  

what it is possible to do to make diffusion more likely.  

In order to analyse the incentives to innovate in the long run, we set up a dynamic game: 

in each period, each duopolist has to decide whether to invest in the new production 

process or not, on the basis of the profits they can earn during their whole life, which we 

assume to be infinite. We solve the game looking for a stationary symmetric equilibrium, 

which may involve mixed strategies. We find that this game leads to multiple stationary 

equilibria, which crucially depend on the cost of switching to the cleanest technology and 

on the emission cap. In particular, one of these possible outcomes consists in both firms 

adopting the most efficient technology (diffusion outcome). Nonetheless, it is not possible 

to predict which outcome will actually occur. An experimental investigation can help us in 

seeing this. We design and implement an “innovation experiment” that replicates the 

“innovation game”. Our aim is to see whether subjects tend to converge to a specific 

equilibrium among those that have been identified in the theoretical analysis.  

The rest of this paper is organised as follows. In the next section we develop a model of 

duopoly, and we determine how the permit  price and the per-period profits change when 

firms move to a cleaner technology. In section 3, we model firms’ strategic decision of 

adopting a cleaner production technology as a dynamic “innovation” game. Section 4 

describes  the experiment that was implemented to test the predictions of the theoretical 

model. The final section concludes, drawing some lessons for environmental policy 

design. 

 
2 The Model 

We consider two profit-maximising firms producing a homogeneous good and competing 

à la Cournot in the output market. Let iy  be firm i ’s output level, for 2,1=i . The inverse 

demand for output is linear ( ) ( )2121 yybayyP +−=+  and firms have identical constant 

marginal production cost c , with ac < . 

The production process generates pollution according to a constant emission-output ratio 

jk , for 2,1=j , such that firm i ’s emission level is iii yke = . There are only two possible 
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technologies in this setting, 1k and 2k , with 0≥jk  for 2,1=j 2, and 121 2kkk ≤≤ 3; hence, 

1k  is the cleanest  technology4. The technology is the only thing for which firms may differ 

one another: starting from an identical technology 2k , each firm may decide to switch to 

the other and more efficient technology, bearing a sunk cost C . 

The government implements a market of emission permits in order to control pollution by 

firms. Because of this regulation, firm i  must hold one permit to discharge one unit of 

emissions.  There is no possibility of abatement in this model: given the adopted 

technology jk , the only way to reduce pollution is to cut production.  

The emission cap is fixed at E  and firms do not have any initial endowments of licences: 

both of them are buyers on the allowance market.  

We assume discrete time and an infinite horizon: firms  operate in both markets for an 

infinite number of periods. In each period, firms face the following decision problem: 

given the permit price5, firms engage in Cournot competition. The quantity choice implies 

a predetermined permit requirement, which depends upon the adopted technology. 

Hence, in each period and taking as given the permit price, each firm determines the 

demand for permits needed to produce its profit-maximising quantity of the good. The 

equilibrium allowance price, q , is derived endogenously by imposing a market clearing 

condition6, given the fixed permit supply and the factor demands for permits implied by 

the state of technology. Finally, output and profit levels are resolved. Aggregate emissions 

are fixed by definition at the level allowed by the total supply of licences.  

In the initial period, firms use the same production technology and an emission reducing 

technology becomes available for purchase. In each period, firm i  may decide to pay a 

sunk cost C , investing in this new technology. Once a firm has adopted the cleanest 

available technology, it cannot return to the previous one, neither it can innovate further: 

                                                 
2 We assume that the constant marginal pollution is strictly positive, i.e. it is not possible to produce any unit 
of the commodity without polluting.  
3 This condition is imposed in order to assure existence and uniqueness of equilibrium.  If this condition is 
not met, the demand for permit of the most efficient firm may be upward sloping.  
4 Note that the subscript j does not necessarily mean that firm i adopts technology ij = . 
5 Firms may have expectations upon permit price. 
6 We can think of an auctioneer who sells the permit at the market clearing price: given a price (previous 
period price or a price announced by the auctioneer), firms believe  they can purchase any amount of permits 
at that price and announce the quantities they will put on the output market; the auctioneer anticipates the 
factor demands for permits and announces the market clearing price (Requate, 1998). 
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hence, investment is irreversible and firms can innovate7 only once in their life. Therefore, 

in each period firms can face one of the following situations: 

- State 0: they both use the least efficient technology 2k , i.e. none of them has 

innovated;   

- State 1: only one of them has switched to the most efficient technology 1k ; we 

assume that the innovating firm is firm 1, whereas firm 2 is the follower; 

- State 2: both firms have adopted the best emission-output ratio 1k . 

We first analyse the firms’ profit maximising decisions in each period and for each 

possible combination of production technologies, disregarding the technology choice. 

Then, we analyse firms’ investment decisions. In what follows the superscript 2,1,0=s  

refers to the state, the subscript 2,1=i  refers to the firm and the subscript 2,1=j  refers 

to the emission-output ratio.   

When both firms use the same technology, they are identical in all respects and the 

solution of the model is analogous to the standard Cournot duopoly case. Let us consider 

state 0 (the analysis of state 2 is analogous). Each firm maximises its profits w.r.t. output 

iy for 2,1=i :  

( )[ ] iiihiy
yqkcyyyyba

i
2max −−+−  

Solving both firms’ maximization problem yields the equilibrium output levels8, the 

demand for permits (multiplying the optimal output quantities by firms’ technological 

parameter), and the equilibrium permit price. In state 0, the equilibrium permit price9 

will be positive only if 00 α<< E ,  with ( )[ ] bcak 32 2
0 −=α ; in state 2, the  equilibrium 

permit price will be positive only if 20 α<< E , with ( )[ ] bcak 32 1
2 −=α  and 02 αα < : 

there are emission caps for which the adoption of a cleaner technology by both firms 

                                                 
7 We use the terms “innovation”, “adoption” and “investment” as equivalent, meaning that a firm change its 
technology paying a given cost. More rigorously, the term “innovation” is used to indicate the result of a 
research and development process, whereas “adoption” is used to denote the switch to a new technology 
which is already available on the market and can be used at some cost. (Tirole, 1998) 
8 The equilibrium output levels are identical, and equal to ( ) bqkcaqyqy 3)()( 2

0
2

0
1 −−== , where the term 

2qk is an extra bit of the marginal production cost. If everything stays equal, reducing the emission-output 

ratio from 2k to
 1k makes both firms’ output levels increase. 

9 The equilibrium permit price in state 0 is [ ] 2
22

0 23)(2 kEbcakq −−= .  The equilibrium permit price in state 

2 is [ ] 2
11

2 23)(2 kEbcakq −−= .                
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drives the initially positive price to zero10. For the moment we make the following 

assumption: 

Assumption 1. The emission cap is such that 20 α<< E .  

Assumption 1 implies that in case of both firms adopting 1k  the permit price is strictly 

positive.  

Proposition 1. Under assumption 1, when both firms adopt the cleanest emission-output 

ratio 1k , we have:  

- if  22 αβ << E , the equilibrium allowance price is lower than in state 0; 

- if 20 β<< E , the equilibrium allowance price is higher than in state 0; 

where ( ) ( )2121
2 32 kkbcakk +−=β 0> . 

Proposition 2. Under assumption 1, when both firms adopt the cleanest emission-output 

ratio 1k , it is 02 ππ > : firms’ (output and) profits are higher than when both firms adopt 

the least efficient technology11. 

Let us now consider the case in which only one firm has innovated (state 1). We assume 

that firm 1 has adopted the lowest emission-output ratio, 1k , whereas the other firm 

produces discharging 12 kk > units of emission per unit of output. Solving firms’ 

maximisation problem gives their output functions12. From the optimal output functions 

we can derive firm 1’s and 2’s demands for permits.   

Proposition 3. Let us denote ( )( )[ ] ( ) 02 12121 >−−−= bkkcakkkθ . If θ≤E , the innovating 

firm becomes a monopolist on the output market, the other firm makes zero profit and is 

forced to exit (drastic innovation), otherwise both firms stay on the market (nondrastic 

innovation) and make strictly positive profits.  

                                                 
10 Notice that if the permit price is null, both firms produce an output quantity equal to bca 3)( − . This is the 

standard result of a Cournot game with identical firms and linear output demand. It is the levels of output 
each firm would produce if there were no environmental regulation (Business As Usual, BAU). 0α and 2α are 
the level of emissions associated to the BAU level of output, when the emission-output ratio is 2k and 1k , 

respectively.  
11 Firms’ identical equilibrium profits are ( )2

2
0 2kEb=π

 

 and  ( )2
1

2 2kEb=π , when both firms use the old 

and the new technology, respectively. Profits are constrained by the environmental regulation. 
12 Firm 1’s and firm’2 output functions (optimal output  levels as function of the permit price q ) in state 1 

are ( )[ ] bkkqcaqy 32)( 21
1
1 −−−=  and ( )[ ] bkkqcaqy 32)( 12

1
2 −−−= , respectively.    
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We  focus  on  the case of nondrastic innovation. The equilibrium permit price13 will be 

positive for 1α<E , with ( )( )[ ] bcakk 321
1 −+=α 0>  and 012 ααα << . Let us make the 

following assumption:  

Assumption 2. The emission cap is such that 2αθ << E .  

Assumption 2 will be maintained throughout the analysis. Note that assumption 2 is 

stronger than assumption 1. 

Proposition 4. Under assumption 2, when only one firm adopts the cleanest emission-

output ratio 1k , we have 

- if 212 3
2

2
1 kkk ≤< , it is 01 qq < : the equilibrium allowance price is lower than in state 

0 whichever the emission cap is; 

- if 21 3
2 kk > the equilibrium allowance price can be lower or higher than in state 0: 

- it is 01 qq < for  21 αβ << E ; 

- it is 01 qq >  for 1βθ << E ; 

with ( )( ) 1212
1 32 bkcakkk −−=β 0>  and 21 ββ < . 

Proposition 5. Under assumption 2,  

- if εθ << E , it is 01
2 ππ < and 1

1
2 ππ < : innovation by one firm hurts the other firm, 

whether the firm that adopts 1k is the first or the second one to do so; 

- if 2αε << E , it is 01
2 ππ > and 1

1
2 ππ > :  innovation by one firm benefits the other firm 

whether the firm that adopts 1k is the first or the second one to do so; 

where ( ) ( ) 01221 >+−= bkkcakkε  and 21 αεβ << . 

Proposition 6. From assumption 2 and propositions 2 and 5, there are two possible 

ranking of per-period profits: 

- if ε<E  then 1
2

021
1 ππππ >>> ; 

- if ε>E  then 01
2

1
1

2 ππππ >>> . 

                                                 
13 The equilibrium permit price in state 1 is ( )( )[ ] ( )2

221
2
121

1 23 kkkkEbkkcaq −−−−−= .     



   9

Proposition 7. Under assumption 2,  

- if ε<E , it is )()( 1
2

201
1 ππππ −>− ; 

- if ε>E , it is )()( 1
2

201
1 ππππ −<− . 

In general, taking the permit price as fixed, the adoption of a cleaner technology makes it 

more convenient for a firm to increase its output level. Whether the firm is the leader or 

the follower or both firms innovate simultaneously, innovation cuts overall production 

costs by reducing permit requirement and expenditure on licence purchase per unit of 

output: given the price, a reduction in the emission-output ratio is equivalent to a 

decrease in the marginal cost.  Hence, when only one firms adopts the new technology, 

innovation enables it to increase its market share and profits at the expense of its rival. 

Despite the higher average abatement by the innovating firm, the allowance price may or 

may not decrease, depending on the emission cap and on the technology combination 

( 1k , 2k ): the smaller the permit supply is, the bigger the innovation effort must be in order 

to determine a sufficient decrease in permit requirement and thus a fall in the permit 

price. Consequently, the non-innovating firm may be advantaged by the other firm’s 

investment: the lower licence price may enable it to increase its production and profits, 

without investing in a cleaner technology. However, firm 2 can exploit the price drop only 

if this drop is sufficiently large. This happens for ε>E . On the other hand, if firm 2 

follows and adopts the new technology (state 2), its output level is always higher than in 

state 1, whereas firm 1’s production may go up or down. As for the non-innovating firm in 

state 1, when imitation14 occurs the firm that has innovated first may benefit from 

imitation and may increase its output (and profits) in state 2 if the permit price 

decreases sufficiently. The condition for this to occur is again ε>E . Finally, if ε<E , the 

increment in per-period profits a firm can get by adopting first is higher than the 

increment in profits it can get by being second. The opposite occurs if the permit supply 

is sufficiently large. 

Till now we have considered the output decisions of firms given their technology. In the 

following section we consider firms’ decisions of investing in a cleaner technology. This 

strategic decision depends upon the ranking between per-period profits.  

 
                                                 
14 We will say that a firm imitates when it is the second to adopt the new technology, i.e. when it is the 
follower.  
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3 The game 

In analysing the strategic investment decision, we assume discrete time and an infinite 

horizon. Let us consider the following game, with two players, firm 1 and firm 2, choosing 

between two possible actions in each period, “innovate” and “not innovate”. In every 

period t , each firm has the possibility of adopting the best available technology 1k if it has 

not already done so, incurring in a once-for-all cost C . If neither firm has innovated at 

time t , each one can still decide to do so in the next period, facing the same decision 

problem at time 1+t . 

Hence the game ends when both firms have changed their technology, either because 

they decided to do so at the same time or because one firm has innovated at a given time 

and the other has chosen to follow15. Since each decision implies a flow of profits, in 

making their choice in each period, firms must consider this profit flow over their infinite 

life, discounted with a discount factor ρ , 10 << ρ . Firm i ’s payoff associated to a given 

combination of firms’ actions is its respective lifetime profit as viewed from the beginning 

of the period16. 

If both firms decide to adopt technology 1k , they get a profit flow of π2 for all the 

remaining periods, net of the investment cost: 

C−
−

=Π
ρ

π
1

2
2

 
(1) 

If one firm has innovated (firm 1), the other one (firm 2) must decide whether to follow or 

not in the next period. Firm 2’s action is chosen solving a single firm optimisation 

problem. Considering two arbitrary periods, t  and 1+t , firm 2 will adopt the best 

technology in period t  rather than in the next one if it gets higher lifetime profits by doing 

so, i.e. if 









−

−
+>








−

−
+ +

=

−

=
∑∑ CC t

t

z

zt
t

z

z

ρ
π

ρρπ
ρ

π
ρρπ

11

2
1

0

1
2

21

0

1
2  

                                                 
15 The game ends since in this case players have no strategic decision to take, but they continue to get their 
per-period profits for the rest of their life.  
16 Both firms know that if they will be playing the game at an arbitrary time t , it would be because they will 

not have innovated before time t . Hence they both will have accumulated ∑
−

=

2

0

0
t

z

zρπ  and they will keep this 

profit for the periods thereafter, whichever decision they will take at time t . This part of firms’ payoff will not 
affect their choice between innovating or not. 
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which is true for  

( ) 1
2

21 ππρ −<− C   (2) 

Condition (2) means that the extra profit firm 2 would get if it followed in each period t  

rather than the next one, is higher than the savings in the cost due to one period delay.  

Proposition 8. Let us denote ( ) ( )ρππ −− 11
2

2  as C . If firm 1 innovates, then the other 

firm either adopts the new technology immediately next period or never, depending on 

the investment cost. Two cases are possible: 

a) quick imitation: if CC < , firm 2 innovates immediately after the other one has; the 

lifetime profits of the leader and of the follower are  

ρ
ρπ

π
−

+−=Π
1

2
1
1

1
1 C

   
     (3)     and      Cρ

ρ
ρπ

π −
−

+=Π
1

2
1
2

1
2

           
(4) 

respectively, since state 1 will last only one period and firms pass to state 2; 

b) infinite delay: if CC > , firm 2 always delays adoption  (never adopts); the lifetime 

profits of the leader and of the follower are  

C−
−

=Π
ρ

π
1

1
11

1
  

         (5)   and        
ρ

π
−

=Π
1

1
21

2
                         

(6) 

respectively, since state 1 will last forever.  

If neither firm has innovated at time t , the game is repeated the next period. The number 

of periods the game will last is potentially infinite: the game stops (but the profit flows 

continue) if one or both firms innovate, since when only one firm has innovated the other 

either follows immediately or never. Therefore, in each period the payoff  0Π  that each 

firm gets if no one innovates, depends on what firms will do in the following period(s).  

Since we solved the part of the game involving only one firm’s decision, we can represent 

the “innovation” game as a symmetric game with two identical firms-players and two 

actions (“innovate” and “not innovate”) in each period, and with payoffs equal to lifetime 

profits, net of the investment cost. There are two games, one for the “quick imitation” 

case and one for the “infinite delay” case.  

We can solve the game looking at each subgame, i.e. looking at every period in which 

neither player has already innovated. Our aim is to solve the game for a stationary (i.e. 

time independent) Nash equilibrium, possibly involving mixed strategies. If such a 
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symmetric stationary equilibrium exists, it is subgame perfect, since all subgames in 

which both firms can make a choice have the same structure and payoffs.  

In order to see whether a stationary equilibrium to this game exists, we start by 

considering each subgame and analysing the possible relationship between payoffs, 

implied by the output and permit market equilibria.  

In the quick imitation case, it is 1
2

2 Π>Π  by propositions 6 and 8. If it is also 01
1 Π>Π ,  

“not innovate” is a strictly dominated strategy for both firms, and the unique possible 

equilibrium is a symmetric Nash equilibrium (innovate, innovate): both firms innovate 

straight away in the first period and the game ends. If it is 01
1 Π<Π , neither firm has a 

strictly dominated strategy and there are three equilibria: two symmetric Nash equilibria 

in pure strategies, in which both firms either innovate straight away or never, and one 

symmetric equilibrium in mixed strategies. 

In the infinite delay case, it is 1
2

2 Π<Π  by propositions 6 and 8. If it is also 01
1 Π<Π ,  

“innovate” is a strictly dominated strategy for both firms, and the unique possible 

equilibrium is a symmetric Nash equilibrium (not innovate, not innovate).  If it is 01
1 Π>Π , 

neither firm has a strictly dominated strategy and there are three equilibria: two 

asymmetric Nash equilibria in pure strategies, in which a firm innovates straight away 

and the other never does, and one symmetric equilibrium in mixed strategies.  

Therefore, a mixed strategy equilibrium is a possible solution to this game in both the 

quick imitation and the infinite delay cases. Whether or not this equilibrium actually 

arises depends crucially on the parameters, since they affect both per-period and lifetime 

profits. We will focus on the effects of the emission cap and of the investment cost on the 

equilibrium, since these are the parameters that the environmental regulator might 

adjust in order to speed up the diffusion of cleaner technologies. In order to determine 

the critical values of these parameters, we will solve the game assuming mixed strategies 

and then we will see for which values of E  and C  this assumption is correct. 

There is a mixed strategy equilibrium for each subgame if there are a probability 1p  and 

a probability 2p  such that firm 1’s strategy “do not innovate with probability 1p  and 

innovate with probability ( )11 p−  (conditional on not having innovated before)” is the best 

response to firm 2’s strategy “do not innovate with probability 2p  and innovate with 
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probability ( )21 p−  (conditional on not having innovated before)”, and viceversa. Since 

firms are identical, it is ppp == 21 .  

Let us consider firm i ’s point of view and assume that the other firm plays in each period 

the strategy ( )pp −1, . If firm i  assumes this, it will innovate in a given period t  if the 

expected payoff of doing so is higher than the expected payoff of not innovating, and 

viceversa. Firm i ’s expected payoff of innovating and of not innovating are 

21
1 )1( Π−+Π= ppVI        (7)    and   

p
ppVN ρ

π
−

Π−+
=

1
)1( 1

2
0

   (8) 

respectively17.  

Both NV  and IV  are functions of p , and their exact forms depend on whether there is 

quick imitation or infinite delay.  Each firm’s optimal mixed strategy is determined 

solving IN VV =  for p . Let us denote this solution as *p . Hence, if a symmetric mixed 

strategy equilibrium exists, it is such that in any period both firms do not innovate with 

probability *p and innovate with probability ( )*1 p− . 

It can be noticed that IN VV = yields a quadratic expression in p . We solved this equation 

for p  for both the quick imitation and the infinite delay cases18. It can be shown that in 

both cases, there are values of the investment cost C  and of the emission cap E  for 

which a symmetric mixed strategy equilibrium ( ) ( )( )**** 1,,1, pppp −−  actually exists.  

                                                 
17 

NV  is determined considering that: 

-if at any time t  one firm innovates, which happens with probability ( )p−1 , the other firm gets 1
2Π ; 

-if one firm does not innovate, which occurs with probability p , the other firm gets 0π  for the current period and the 

expected value of not innovating for the future periods, discounted with the discount factor ρ .  
18 The solution for the quick imitation case is  

( ) ( )( )( ) ( )ρππππρππρππππππππ 21
1

21
1

1
2

2221
2

01
1

21
2

01
1

* 214 −



 −−−−+−+−+−+−= Cp . The second root 

of the equation IN VV = is in the range between 0 and 1 only for CC > , which implies that the infinite delay 

lifetime profits should be considered. The solution for the infinite delay case is  

( ) ( )( ) ( ){ ++++−−−
−

= 1
1

1
2

20
21

1

* 11
2

1
πππρπρρ

ρππ
Cp  

                                               ( )( ) ( )( ) ( )( )( )

−−+−++++−−−− 1

1
221

2
21

1
1
2

20 1411 ππρππρπππρπρρ CC  

The second root of the equality IN VV =  is in the range between 0 and 1 only for CC ~> , which implies that 

innovation should never occur, as we will see later. 
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Let us define Ĉ  as the minimum value of the investment cost required to have a mixed 

strategy equilibrium in the quick imitation case, where ( )[ ] ( )ρππρππ −−−−= 1ˆ 21
1

01
1C . 

Proposition 9. In the quick imitation case, the following equilibria arise: 

- if CCC <<ˆ , there are a symmetric mixed strategy equilibrium 

( ) ( )( )**** 1,,1, pppp −−  and two symmetric pure strategy Nash equilibria (not innovate, 

not innovate) and (innovate, innovate);  

- if CC ˆ< , there is a pure strategy equilibrium (innovate, innovate) in every period.  

Hence, proposition 9 implies that each firm innovates for sure if the benefit of waiting for 

one period (savings in the investment cost obtained by delaying of one period the 

adoption of 1k ) is lower than the forgone profits of being first (extra-profit of being the 

first to adopt the new technology, net of the profit decrease caused by imitation). Indeed, 

for CC ˆ< the probability is not defined and we can conclude that there is a pure strategy 

equilibrium (innovate, innovate)19. On the other hand, CCC <<ˆ implies that if the cost 

savings of waiting is higher than the opportunity cost of being first but lower than the 

opportunity cost of being second (recall proposition 8), each firm can do better by 

waiting for the other to invest and investing with one period delay20. Therefore, the mixed 

strategy equilibrium arises when firms are afraid of failing in coordinate themselves on 

the Pareto dominant outcome (not innovate, not innovate): the mixed strategy outcome is 

worse than the pure strategy (not innovate, not innovate), but it is better than the pure 

strategy (innovate, innovate) There is a discontinuity21 at CC ˆ= , as it is evident from 

Figure A1.1 (Appendix 1). 

                                                 
19 For each firm it is IN VV <  either if the other firm innovates for sure or if it does not. If one firm adopts 1k  

with certainty, the other firm’s expected payoff of not innovating collapses to 1
2Π , whereas its expected payoff 

of innovating degenerates to 2Π , with 1
2

2 Π>Π . If one firm does not adopt the new technology for sure, the 

other firm’s expected payoff of not innovating is ( )ρπ −10 , whereas its expected payoff of innovating 

degenerates to 1
1Π , with ( )ρπ −>Π 101

1  for CC ˆ< . 
20 Indeed, each firm would be better off if they both continue to use the old technology forever (since it is 

( ) 20 1 Π>− ρπ ), but if one adopts 1k the other one has to follow in order to limit its loss. 

21 For CC ˆ= the solution to IN VV = , is 1* =p , implying that for this value of the investment cost there is a 

pure strategy equilibrium (not innovate, not innovate) in every period. 
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Proposition 10. In the quick imitation case, when a mixed strategy equilibrium arises, the 

probability of not innovating *p  is decreasing in the investment cost C , other things 

being equal.  

Proposition 10 says that it is more likely to adopt the best technology when the 

investment cost gets higher. This result seems counterintuitive.  One  possible 

explanation may stems from the incentive to play a  mixed  strategy in  the  quick 

imitation case: each firm would like to be the only one to adopt the new technology but 

knows that it will be followed. When the investment cost is higher, both firms have a 

greater incentive to wait and see whether the other invests: a firm must (“threaten” to) 

innovate with a higher probability in order to leave its rival indifferent between innovating 

or not.   

Let us now consider how the mixed strategy equilibrium changes with the emission cap 

E .  

Proposition 11. In the quick imitation case, the following equilibria are feasible : 

- if εε << E , there are a symmetric mixed strategy equilibrium ( ) ( )( )**** 1,,1, pppp −−  

and two pure strategy Nash equilibria (not innovate, not innovate) and (innovate, 

innovate), provided that CCC <<ˆ , 

- if ε<E or ε>E , there is a pure strategy equilibrium (innovate, innovate) in every 

period22.  

First of all, changes in the emission cap affect the mixed strategy equilibrium because 

they affect the critical cost range. It  can  be  CCC <<ˆ  only  for  εε << E .  For  E  

outside of this range, the relative magnitude of per-period profits is such that the net 

benefit of being first (extra per-period profit, net of the profit decrease caused by 

imitation) is always greater than the benefit of being second23. 

                                                 
22 ( )( ) ( )( )

( )( ) ( )( )3
2112

2
1

2
12

2
2

2
1

2
22121

2
1

kkkkkkkk
kkcakkkk
−+++−

−−−−
=

ρ

ρ
ε  and ε  is higher or lower than θ  depending on the discount 

factor and on the technology parameters. 
23 Recalling proposition 7:  
- if εε << E , the decrease in per-period profit caused by being followed partially compensates the extra-

profit of innovating first, so that a firm can get an higher increment of the per-period profit by adopting 

1k with one period delay: there exist investment cost CC < such that the cost savings of waiting is higher than 

the extra-profit of being first but lower than the extra-profit of being second and a mixed strategy equilibrium 
is feasible; 
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Proposition 12. In the quick imitation case, when a mixed strategy equilibrium arises, the 

probability of not innovating *p  is increasing in the emission cap E , other things being 

equal.  

When the permit supply increases, the benefit of adopting the new technology increases 

slightly more than the expected value of not innovating; hence, the incentive to adopt 

increases accordingly, even though the best outcome for both firms is still associated to 

both staying with the old technology. A firm must thus (“promise”) not to innovate with a 

higher probability in order to leave its rival indifferent between innovating or not   

We will now consider the infinite delay case. Let us denote C~  the maximum value of the 

investment cost for which a mixed strategy equilibrium arises in the infinite delay case, 

where ( ) ( )ρππ −−= 1~ 01
1C .      

Proposition 13. In the infinite delay case, the following equilibria may arise: 

- if CCC ~<< , there are a symmetric mixed strategy equilibrium 

( ) ( )( )**** 1,,1, pppp −−  and two asymmetric pure strategy Nash equilibria (innovate, 

not innovate) and (not innovate, innovate);  

- if CC ~> , there is a pure strategy equilibrium (not innovate, not innovate)24.  

Hence, proposition 13 implies that each firm does not innovate if the benefit of waiting 

for one period are higher than the forgone profits of being first25. Indeed, for CC ~>  the 

probability is not defined and we can conclude that there is a pure strategy equilibrium 

                                                                                                                                                              
- if ε<E (the emission cap is sufficiently strict), the extra-profit of innovating first net of the decrease in 

per-period profit caused by being followed is higher than the extra-profit of being second: for every CC <  the 
cost savings of delaying adoption of one period are lower than the extra-profit that can be realised by 
adopting technology 1k , and firms innovate straight away; 

- if ε>E  (the permit supply is sufficiently large), the extra-profit of being second is higher than the extra-
profit of being first; however, imitation leads to an increase in the per-period profit of the first adopter,  so 
that being first is still better: as before, for every  CC <  the cost savings of delaying adoption of one period 
are lower than the extra-profit that can be realised by adopting technology 1k , and firms innovate straight 

away. 
24 For CC = , it is 0* =p . However, as for quick imitation, we leave this case undetermined, since C is the 

value of C  for which the non-innovating firm should be indifferent between adopting the new technology 

immediately in the next period or never. For some values of CC ~> , there are two solutions to the equation 

IN VV = which implies that there is no mixed strategy equilibrium. However, for CC ~>  it is ( ) ( )00 IN VV >  and 

( ) ( )11 IN VV > :  there is a unique pure strategy equilibrium (not innovate, not innovate). 
25 In this case, the other firm will not follow, and the innovating firm does not incur in a reduction of its extra-
profit in the following period.    
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(not innovate, not innovate)26. Therefore, the condition CCC ~<<  implies that if the cost 

savings of waiting is lower than the opportunity cost of being first, provided that the 

investment cost is sufficiently high to avoid imitation (recall proposition 8), each firm can 

do better by trying to be the first and only one to adopt the new technology, i.e. by 

preempting its rival. Each firm can find it convenient to play a mixed strategy in order to 

confuse its rival and to be able to reach the innovator’s payoff. The mixed strategy 

outcome is worse than the pure strategy one (innovate, not innovate), but it is better than 

the pure strategy one (not innovate, innovate). There is a discontinuity at CC ~= , as it is 

evident from Figure A1.2. 

Proposition 14. In the infinite delay case, when a mixed strategy equilibrium arises, the 

probability of not innovating *p is increasing in the investment cost C , other things being 

equal. 

This is a more intuitive result than we have for the quick imitation case. If the investment 

cost increases, the advantage of being the first to adopt the new technology decreases; 

hence, both the incentive to invest for preemption and the probability of innovating 

decrease accordingly. 

Let us now consider how the mixed strategy equilibrium changes with the emission cap 

E .  

Proposition 15. In the infinite delay case, the following equilibria are feasible: 

- if ε<E , there are a symmetric mixed strategy equilibrium ( ) ( )( )**** 1,,1, pppp −−  and 

two asymmetric pure strategy Nash equilibria (innovate, not innovate), provided that it 

is also CCC ~<< ; 

- if ε>E , there is a pure strategy equilibrium (not innovate, not innovate).  

First of all, changes in the emission cap affect the mixed strategy equilibrium because 

they affect the critical cost range. It can  be CCC ~<<  only  for  εθ << E .  For  ε>E , 

                                                 
26 For each firm it is IN VV >  either if the other firm innovates for sure or if it does not. If one firm adopts 

1k with certainty, the other firm’s expected payoff of not innovating collapses to 1
2Π , whereas its expected 

payoff of innovating degenerates to 2Π , with 21
2 Π>Π . If one firm does not adopt the new technology for 

sure, the other firm’s expected payoff of not innovating is ( )ρπ −10 , whereas its expected payoff of 

innovating degenerates to 1
1Π , with ( )ρπ −<Π 101

1  for CC ~> . 
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the relative magnitude of per-period profits is such that the benefit of being first is always 

lower than the benefit of being second27.  

Therefore, the mixed strategy equilibrium arises when the switching cost and the 

emission cap  are such that the payoff profiles imply a preemption game: each firm gets 

the highest payoff if it is the only one to innovate, and the lowest payoff if both do. 

Proposition 16. In the infinite delay case, when a mixed strategy equilibrium arises, the 

probability of not innovating *p  is decreasing in the emission cap E , other things being 

equal.  

This may appear counterintuitive. However, an increase in the permit supply, provided 

that it is not excessive (such that the condition ε<E is met) makes the innovating firm’s 

profit higher: the incentive to adopt first becomes stronger and then the probability of 

innovating goes up. 

Appendix 2 reports a numerical example.  

 

4 The Experiment 

We designed and implemented an experiment that replicated the “innovation game” 

described in the previous chapter. The experiment was computerized using the Z-Tree 

software developed at the University of Zurich by Urs Fischbacher. 

As in the “innovation game”, the decision problem involves two subjects, representing the 

two duopolistic firms. Subjects play a dynamic game that ends after a random number of 

periods; we will explain later how subjects’ decision problem in this setting is equivalent 

to the theoretical decision problem over an infinite horizon. In the initial round of the 

game, the two players are both in a state that we denote as “state A”, which is associated 

with a symmetric combination of payoffs. Players have to decide whether to remain in 

“state A” or to switch to a state denoted as “state B”.  Once a player has decided to 

                                                 
27 Recalling proposition 7:  
- if ε<E , there exists an investment cost CC ~< such that the cost savings of waiting for one period are 
lower than the forgone extra-profit of being first,  provided that the investment cost is sufficiently high to 
avoid imitation:  a mixed strategy equilibrium is feasible; 

- if ε>E  (the permit supply is sufficiently large), for every  CC >  the cost savings of delaying adoption of 

one period are higher than the extra-profit that can be realised by adopting technology 1k , and firms never 

innovate.   
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change state, he\she cannot return to the previous one. Each combination of states is 

associated with a combination of payoffs. Hence, “state A” corresponds to the old 

technology and “state B” corresponds to the new technology. The decision of moving 

from A to B corresponds to the decision of innovating. We leave the setting as abstract as 

possible, not using the words “technology” and “innovation”, in order to avoid any 

influence that this wording might have on subjects.  

When deciding to change state, players incur in a once-for-all cost, which is deducted 

from their payoff. It is not explicitly stated that there is a switching cost; however this is 

evident from the payoff structure: players know their net payoffs associated to their 

decisions, so that they do not need to make any calculation to determine what they will 

be paid.  

Subjects are paid the payoff corresponding to the combination of states they are in when 

the game finishes. The number of rounds is randomly determined and subjects do not 

know which round is going to be the final one. Each player’s decision problem ends when 

he\she has already moved from A to B, even though the game continues until the 

randomly determined number of rounds is over. The switching cost is incurred only once, 

in the round in which a subject decides to move from A to B: only if this round happens to 

be the final one, the subject that has moved will get a lower payoff (i.e. it will pay the 

once-for-all-cost), otherwise the subject will get the “full” payoff. In the instructions, all 

the payoffs are referred to as being potential, unless they are the payoffs corresponding to 

the state the subjects are in when the game ends (actual payoffs).  

The instructions of the experiment are reported in Appendix 3. These instructions refer to 

the first treatment: instructions are the same for all the treatments, except for payoffs. 

Let us now consider the equivalence between the experimental design, in which the game 

ends according to a random stopping rule, and the theoretical game, in which each firm’s 

life is infinite. In the theoretical analysis, firms discount their per period profits and the 

investment cost with a discount factor ρ  in order to determine their lifetime profits. In 

the experiment, there is a probability λ  that the game ends at each round, and a 

probability ( )λ−1  that the game will go on to the next period28. Let tΠ  denote the payoff 

that the subject would get if the game finished in period t . Then, as viewed from period 1 

                                                 
28 Whichever the period players are in, they know that the game will finish after a finite number of repetitions 
but they do not know when: the number of rounds that remains to be played could be very large.   
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the probability of the game stopping in period 1 (and getting 1Π ) is λ , the probability of 

it stopping in period 2 (and getting 2Π ) is ( )λλ −1 , the probability of it stopping in period 

t   is ( ) 11 −− tλλ . Hence, considering a stream of payoffs 1Π , 2Π ,…, tΠ , each player 

expected payoff is 

( ) ( )∑
∞

=

− Π−
1

11
t

t
tλλ                                                (9) 

Therefore, a discount factor ρ in theory is equivalent to a probability ( )λ−1  that at each 

round the game continues to the next one. The theoretical decision problem is to choose 

whether and when innovate in order to maximise the stream of future per period profits. 

In the experiment, a subject has to choose whether and when to change state in order to 

maximise (9). The two decision problems are equivalent; the only difference is the scaling 

factor λ , which does not affect decision.   

In the experiment, the payoff functions and the probability λ  are common knowledge. At 

the end of any one round each subject is told his\her rival’s decision.   

We implemented 4 treatments, differing one another in terms of  the investment cost 

and\or the emission cap. Hence, C  and E  are our treatment variables. In particular, the 

values of C  are such that two treatments imply quick imitation and the other two imply 

infinite delay, and the values of E  are “high” for two treatments and “low” for the other 

two, as summarised in  Table 1. 
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Table 1 - Treatments 

                               
E  

 
C  

High 
22=E  

Low 
5.18=E  

 
Quick imitation 

1000=C  
 

T1 T2 

Infinite delay 
1500=C  

T3 T4 

 

Appendix 3 reports the payoff tables of the 4 treatments, that were given to subjects 

together with the instructions.  The payoffs and the probability of the game stopping at 

any one round ( 1.0=λ ) are all that subjects needed to know in order to reach their 

decision. 

Each treatment requires 9 subjects. 8 subjects, divided into 4 pairs, play the game 5 

times, each of which with a different opponent. Hence, each subject faces the decision 

problem underlined above with 5 different players, without knowing who they are. By 

making the subjects playing several times we aim at collecting a sufficient number of 

observations that allows us to evaluate whether each individual always adopts the same 

strategy or randomises. The “absolute stranger” matching29 should control for correlation 

between repetitions of the game: as far as strategic interaction is concerned, the strategy 

each subject chooses to play in a repetition should be independent on what happens in 

the previous one(s) since the subject pairs are different30. For the scope of the data 

analysis, we make the assumption that the 5 plays of the game in each treatment are 

independent one another. 

The ninth subject does not play the game, but is in charge of determining the number of 

rounds each of the 5 games lasts. We call this subject the “Round Determinator” 

(Allsopp, 2002).  The “Round Determinator” is elected by the subjects in each session 

and determines the number of rounds of each of the 5 repetitions of the game, as 

described in detail in the instructions. This number is not revealed to the other 

                                                 
29 The “absolute stranger” matching implies that at any game each subject plays with a new partner, who is 
not known, and two subjects would never play together more than once.  
30 However, the 5 games will always be correlated, because each subject gains experience from one game to 
the next (learning). 
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participants in the experiment, though the subjects can check that the Round 

Determinator has performed the job described31.  

The experiment consisted of 4 sessions, one for each treatment. All the sessions took 

place in the Laboratory of the Centre for Experimental Economics (EXEC), at the 

University of York. Participants in the experiment were all undergraduate students, 

except for two postgraduate students. There were no trial periods. 

Each game lasted 3-4 minutes depending on the number of rounds. At the end of the fifth 

play, the subjects were informed that the experiment was complete and were paid in cash 

and were then free to leave. Each session lasted between 25 and 45 minutes.  

Table 2 reports for each treatment the number of times in which one subject was in state 

A whereas the other was in state B and the number of times the subjects in A followed 

immediately or waited some rounds to switch to state B. A time lag equal to 1 round 

means that the subject that was in state A moved to state B immediately the following 

round; a time lag equal to 2 means that the subject that was in state A waited 1 round 

before switching to B, and so on.  The column labelled “never” reports the number of 

times that subjects who were in state A whereas their opponent was in state B were cut 

off in state A by the end of the game. We cannot be sure that if the game lasted longer 

they would have not moved.  

 

Table 2 – Time lags before following 

  Time lag 

Treatment 
Subjects  in 
A when the 
other is in B 

1 round 
2 

rounds 
3 

rounds 
4 

rounds 
5 

rounds 
7 

rounds 
never  

1 7 5 0 0 0 0 0 2 
2 13 6 5 1 0 0 1 0 
3 13 7 2 1 0 1 0 2 
4 7 5 1 0 0 0 0 1 

 

No statistical analysis is needed to notice that subjects tended to quickly follow the 

player that had already moved in all the treatments: most observations are concentrated 

in time lags 1 and 2. There was a propensity to follow also in the infinite delay 

                                                 
31 In this respect, this mechanism has the advantage of being transparent. Another advantage is that the 
number of rounds is determined by someone other than the experimenter, hopefully leading to a higher “trust 
degree” towards the mechanism itself. Moreover, this method is easy to carry out. However, there is always 
the risk that subjects who are not familiar with probabilities might not understand the mechanism. 



   23

treatments, despite the fact that the expected benefits from switching were 35, 4, -26 

and -48 in treatments 1, 2, 3, and 4 respectively32.  

A possible explanation to this behaviour might be that there was a herd behaviour 

component: the players that had not moved to state B might have just imitated their 

rivals thinking that if the other players had moved that was the right thing to do.  

Another possible explanation might be that subjects competed between each other: the 

players that had not moved were not willing to let their respective rivals earn more. 

Indeed, the risk of being caught by the end of the game was low and for a moderately risk 

loving person, this competitive (or “envy”) component might affect behaviour33.  

All the 4 subject pairs were in state A at least 20 times in each treatment, since in the 

first round of each of the 5 plays all the subjects started in state A. In treatment 1 and 4 

at least one subject in each subject pair moved to state B at the first round, whereas in 

the other two treatments some subject pair managed to coordinate on both not moving 

for more than 1 round. However, only in the 5th play of the second treatment a pair 

managed to coordinate on the (not move to B, not move to B) outcome, i.e. on the outcome 

with the highest expected payoff.  

10 players over all the treatments always chose to move to state B when both subjects 

were in state A. We regard these subjects as playing a pure strategy “move to B (innovate)” 

in any round. Let us denote these players as “type B subjects”.  To be more precise, 

these subjects could also have adopted a mixed strategy, but in those plays it happened 

that they picked the B decision. We do not have enough observations to be reasonably 

sure that these players adopted a pure strategy34.  On the other hand, there are no 

subjects that always chose to remain in state A, given that both players in the pair were in 

A. Hence, we conclude that no subjects played a pure strategy “not move to B (not 

innovate)”.   

Let us consider the probability of not moving to B over all the sample. Since we are 

interested in players’ choice when both could make a decision, the total number of 

                                                 
32 By switching state subjects could either gain an extra-profit with probability 0.9 or lose their payoff with a 
probability 0.1.   
33 If so, it might be interesting to run the experiment with a different parameter set, either increasing the 
probability that the game ends at each round, i.e. decreasing the discount factor, or reducing the difference 
between the payoff when both players are in state B and the payoff of the player that remains in state A. 
Another possibility is to do a treatment in which one of the players is the computer. 
34 It might be worthwhile to repeat the experiment and submit a questionnaire to subjects, asking them to 
describe their strategy, though this could change their behaviour 
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rounds in which both subjects were in state A represents the number of observations for 

each treatment, i.e. our sample sizes.  

From each treatment, we estimate the probability that at least one player decides to 

remain in state A when both players are in A, that is Pr{at least one remains in A | both in 

A}. Denote these probabilities as 4321 ˆ,ˆ,ˆ,ˆ pppp . Therefore, τp̂ , 4,...,1=τ , is the sample 

proportion between the number of times at least one player’s choice is A when both are 

in A, and the number of times both players are in A.  We are interested in testing the 

hypothesis that each treatment sample probability is not statistically different from the 

corresponding probability suggested by the theory. Denote these latter probabilities as 

*
4

*
3

*
2

*
1 ,,, pppp . Given the sample sizes of our treatments, 401 =n , 542 =n , 543 =n , 

404 =n respectively, we can approximate the sample distribution of each proportion as  

( )







 −

τ

ττ
ττ n

pppNp
**

* 1,~ˆ  

The null hypotheses we want to test are *
0 ˆ: ττ ppH = , 4,...,1=τ . The rejection rule for a 

two-tailed hypothesis test will lead us to reject 0H  when ατ cz > , where 
( )

τ

ττ

ττ
τ

n
pp

ppz
**

*

1

ˆ

−

−
=  

is the usual z-score, αc  is the ( )%1 α−  critical value, and α  is the significance level. 

The results we get are summarised in the following table. 

 
Table 3 - Estimates of the probability of not moving to B over all the sample 

Treatment n  τp̂  *p  z  Result 

1 40 0.25 0.84072 -10.2095 ** 
2 54 0.555556 0.66667 -1.73211  
3 54 0.611111 0.24572 6.236798 ** 
4 40 0.25 0.40506 -1.99767 * 

 

In table 3, each row refers to a treatment. The columns show, for each treatment, the 

sample size, the sample probability, the theoretical probability, the z-score, and the 

results we get in terms of rejecting the null hypothesis, respectively. By “*” and “**” we 

indicate that we reject the null hypothesis that the two probabilities are not statistically 
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different at 5%, and 1% significance level, respectively. If the cell reports no “star”, then 

for these two significance levels we cannot reject the null hypothesis.  

We estimate the probability of not moving to B excluding the type B subjects from the 

sample size of each treatment. As mentioned above, here we are making the assumption 

that the type B subjects played a pure strategy “move to B”; since no subject chose to 

stay in A in all the rounds in which both he\she and his\her opponent were in state A, 

there are no subjects who played a pure strategy “not move to B”. Hence, the players that 

are not type B are assumed to have played a mixed strategy. Since we are interested in 

the choice of the subjects that played a mixed strategy when both could make a decision, 

the total number of rounds in which both subjects (of this type) were in state A represents 

the number of observations for each treatment, i.e. our sample sizes. Therefore, the 

analysis is analogous to the previous one, with different sample sizes of the 4 treatments, 

251 =n , 442 =n , 493 =n , 204 =n .  

For each treatment, let us denote the probability that at least one (mixed strategy) player 

decides to remain in state A when both (mixed strategy) players are in A as τp) , 4,...,1=τ . 

As before, τp) , 4,...,1=τ , is the sample proportion of the number of times at least one 

(mixed strategy) player’s choice is A when both are in A. The null hypotheses we want to 

test are *
0 : ττ ppH =)

, 4,...,1=τ . As we did for the other estimated probability τp̂ , we 

apply the rejection rule for a two-tailed hypothesis test and we summarize the estimation 

results in the following table, which is analogous to table 3. 

 
Table 4 - Estimates of the probability of not moving to B over the “mixed strategy” sample 

Treatment n  p)  *p  z  Result 

1 25 0.4 0.84072 -6.0218 ** 
2 44 0.681818 0.66667 0.213152  
3 49 0.673469 0.24572 6.954958 ** 
4 20 0.5 0.40506 0.86494  

 

We can make the following considerations: 

a) comparing the estimated probabilities τp̂ and τp) , 4,...,1=τ , we get the same results: 

we cannot reject the null hypothesis that the estimated probability is not statistically 

different from *p  only in treatments 2 and 4; 
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b) comparison between quick imitation and infinite delay treatments: for the same 

permit supply, the probability of not innovating should be lower in treatments 3 and 

4, but the estimated probability follows this trend only for treatments 2 and 4, 

corresponding to the low permit supply; 

c) comparison between high and low permit supply treatments: for the same cost, the 

probability of not innovating should be increasing in E  in the quick imitation 

treatments and decreasing in E  in the infinite delay ones, but the estimated 

probability does not fit this trend in any treatment. 

We conclude this section, observing that the most frequent final outcome was (State B, 

State B) in all the treatments. Subjects changed state more often then predicted by the 

theory, except than in treatment 3, and they generally followed if their respective 

opponents had switched to state B. Players appeared to be “attracted” by changing state 

for reasons that are out of the strategic structure. Both players in state B (in any period) 

is the Pareto inferior pure strategy equilibrium in the quick imitation case; hence, we 

conclude by saying that subjects failed in coordinating on the Pareto superior equilibrium 

in each period. On the other hand, both players in state B is not a pure strategy 

equilibrium in the infinite delay case, since in this case pure strategy equilibria are 

asymmetric. However, (B,B) is the most likely outcome when subjects play  a  symmetric  

mixed  strategy, where the probability of (B,B) arising in any period is   ( )( )** 11 pp −− , 

equal to 0.569 and 0.354 in treatment 3 and 4, respectively.  

 

Concluding remarks 

We have looked at the impact that a market of emission permits may have on the 

propensity of firms to invest in environmental friendly technologies. In particular, we have 

focused on the effects of the interaction between the output and the permit markets on 

firms’ investment decisions.  We have looked at the conditions under which the diffusions 

of a cleaner technology in a non-competitive setting is more likely to occur. In this 

respect, we aimed at deriving some suggestions for environmental regulators. We have 

addressed this problem from both a theoretical and an experimental point of view.  

In a non-competitive setting, firms’ investment decisions have a strategic component, 

since a firm can use the adoption of a cleaner technology to enlarge its market share in 

the industry at the expense of its rival. We modelled this strategic interaction as a two-
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firm dynamic game, in which each firm has to choose whether and when to make an 

irreversible investment, that affects the infinite stream of its future profits. We solved this 

“innovation game” looking for symmetric stationary equilibria. We have seen that the 

stationary equilibria to this game crucially depend on both the cost of switching to the 

cleanest technology and the emission cap. Given the directions in which the investment 

cost and the emission cap affect the feasible stationary equilibria, an environmental 

regulator aiming at speeding up the diffusion of an environmental friendly technology has 

to adjust these variables in the appropriate manner. 

It is intuitive that, given the emission cap, subsidising the duopolists in order to lower the 

cost of changing technology will induce both firms to adopt the superior technology. 

However, we can expect this “diffusion” outcome only if the cost of switching is 

sufficiently low. In  particular, the cost must be such that the cost savings from delaying 

adoption are lower than the net benefits from being the leader.  

For some higher values of the investment cost, this “diffusion” outcome is only one of the 

possible outcomes. However, the control authority can still use the investment cost and 

the permit supply as instruments to push firms towards the most desirable outcome, 

from an environmental point of view. In particular, given the permits supply, the regulator 

should try to push the investment cost as close as possible to the critical value that splits 

the quick imitation and the infinite delay cases; this is the cost below which the savings 

from delaying imitation are lower than the gains from following and above which the 

opposite occurs. The closer is the switching cost to this value, the higher is the 

probability that any one firm innovates in a period. If the investment cost is above this 

critical value, the regulator can make joint adoption more likely by subsidising firms. 

Alternatively, given the cost, it can increase the permit supply such that the benefit from 

switching is higher than the benefit from delaying adoption. In this case the objective is to 

make innovation as profitable as possible, increasing both firms preemption incentive. On 

the contrary, if the investment cost is below this critical value, the regulator may expect a 

quick imitation and can push diffusion by taxing the investment! Alternatively, given the 

cost, it can decrease the permit supply. In this case the objective is to make firms afraid 

of being preempted, so that each firm is not induced to adopt because it will be better off 

by doing so, but it will be tempted to invest in order to avoid to be worse off if its rival 
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moves first. In other words, the regulator objective is to make more difficult for firms to 

coordinate on the non adoption outcome (without communication).   

For the cost and emission cap values for which the “diffusion” equilibrium is only one of 

the possible stationary equilibria, the diffusion is not the dominant outcome: firms could 

be better off by doing something else, either coordinating on non adoption or on an 

outcome in which only one adopts.  

Game theory does not help us in predicting which outcome will actually occur. In 

particular, not necessarily firms will manage to coordinate on the Pareto superior one. An 

experimental investigation can help us in seeing this.  

Our pilot experiment provided interesting initial results as well as revealing some points 

in the experimental design and parameter set that could be worthy to revise.  The mostly 

observed equilibrium was not the Pareto dominant one. This result is consistent with 

other experimental investigations, which support the conclusion that a Pareto dominant 

equilibrium does not necessarily represent a focal one (Ochs, 1995).  

In interpreting these initial results we must pay special attention; in particular, we should 

consider the following: 

- subjects might not have completely understood the round determination mechanism 

or they might not have believed it, so that this mechanism failed in inducing 

discounting: subjects looked at payoffs associated to each combination of states, 

rather than at the expected payoffs; 

- subjects might well understood the random number of rounds in each play, but the 

probability of stopping the play at each round was too low, so that subjects did not 

consider the risk associated with changing state; 

- the difference between payoffs corresponding to different outcomes is not striking, 

even though parameters lead to substantially different *p : probably, the experiment 

should be designed in such a way that it penalizes bad play sufficiently, especially as 

far the imitation choice is concerned; 

- it is difficult to implement a mixed strategy. 

Further experimental sessions are needed in order to both provide a larger number of 

observation for statistical analysis and test subjects’ behaviour under different parameter 

sets. If these results prove to be robust to changes in parameter set and further 

experimental sessions, we could conclude that (innovate, innovate) is the most likely 



   29

outcome of this “innovation game” when the permit supply and the investment cost are 

such that a stationary symmetric mixed strategy equilibrium may arise in any period.  

This is an encouraging result from the environmental regulator’s point of view. When, 

given the permit supply, the investment cost is sufficiently low that each firm can gain by 

adopting first, even if it anticipates that its rival would follow, the environmental regulator 

can “predict” that both firms will innovate straight away. If the investment cost is even 

slightly higher than this critical value, the outcome of the game will be “unpredictable”. 

The experiment focused on these “unpredictable” cases, showing that even in these cases 

the control authority does not need to worry too much, since firms’ behaviour will 

eventually lead to diffusion. The experiment results suggest that when quick imitation is 

expected, firms may fail to coordinate on not innovating, since for each of them the fear 

of the other innovating first apparently prevails. In the infinite delay case, when a 

preemptive equilibrium is the dominant one, the preempted firm does not apparently 

leave the other firm maintain this advantage position, and tend to imitate, even though 

for a firm (maximising its expected payoff)  would be better not to do so.  
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Figure A1.2 – Infinite delay: optimal probability of not 
innovating in terms of the investment cost, ( )Cpp ** = , for 

fixed emission cap and technology parameters. 
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Appendix 2 – Numerical Examples 

Table A2.3 reports a numerical example for the quick imitation case, based on the 

parameters reported in Table A2.1. Table A2.2 reports the equilibrium permit prices, the 

per-period profits and the critical cost values implied by this parameter set. The 

equilibrium probability and the payoffs are calculated for increasing values of the 

investment cost C and for two different values of the permit supply E . The values of C  

are the same for the two emission caps.  

Table A2.1 - Parameters 

a  b  c  1k  2k  ρ  θ  2α  ε  
10 1 2 0.7 0.8 0.9 0.6222 3.733 2.987 

 

Table A2.2 - Permit price, per period profits and critical cost for two values of the permit supply 

E  0q  1q  2q  0π  1
1π  1

2π  2π  C  Ĉ  C~  

2 5.3125 5.2632 5.3061 1.5625 2.6051 1.1831 2.0408 8.5768 5.34710.4261
2.5 4.1406 3.9474 3.7755 2.4414 3.5239 2.1977 3.1888 9.9110 7.80810.8245

The following can be noticed: 

- when the permit supply is higher, the critical values for the cost, Ĉ andC , 

increase; therefore for 5.2=E  only the highest values of C leads to a solution 

between 0 and 1; 

- the probability of not innovating *p is higher than in the infinite delay case; 

- *p  is decreasing in C and increasing in E ; 

- lifetime profits and expected payoffs decrease with C and increase with E ; 

- the expected payoff implied by *p is increasing in *p , and so it is decreasing in C ;  

- the expected payoff of never innovating is constant; 

- for all the values of C and E, it is 1
2

21
1 Π>Π>Π   and 2*

0

)(
1

Π>>
−

pV
ρ

π
 

Table A2.4 reports a numerical example for the infinite delay case, based on the 

parameters reported in Table A2.1. The equilibrium probability and the payoffs are 

calculated for increasing values of the investment cost C and for two different values of 
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the permit supply E . The values of C are the same for the two emission caps. The 

following can be noticed: 

- when the permit supply is higher, the critical values for the cost, C and C~ , 

increase; therefore for 5.2=E only the highest values of C lead to a solution 

between 0 and 1 (for lower C , the game is a quick imitation one); 

- the probability of not innovating *p is lower than in the quick imitation case; 

- *p is increasing in C and decreasing in E ; 

- lifetime profits decrease with C and increase with E ; 

- the expected payoff of never innovating is constant; 

- the expected payoff implied by *p is increasing in *p , and so it is increasing in C . 

-   for all the values of C and E  it is 21
2

1
1 Π>Π>Π  and 1

2
*1

1 )( Π>>Π pV . 
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Table A2.4 - Infinite delay case: numerical example 
2=E  5.2=E  

C *p  1
1Π  1

2Π  2Π  ρ
π
−1

0

 ( )*pV  *p  1
1Π  1

2Π  2Π  ρ
π
−1

0

 ( )*pV  

8.8268306 0.0476502 17.224262 11.831333 11.581333 15.625 11.85022 - 26.411704 21.976762 23.060925 24.414063 - 
9.0768306 0.0956419 16.974262 11.831333 11.331333 15.625 11.871033 - 26.161704 21.976762 22.810925 24.414063 - 
9.3268306 0.1440352 16.724262 11.831333 11.081333 15.625 11.894113 - 25.911704 21.976762 22.560925 24.414063 - 
9.5768306 0.1929064 16.474262 11.831333 10.831333 15.625 11.91989 - 25.661704 21.976762 22.310925 24.414063 - 
9.8268306 0.2423546 16.224262 11.831333 10.581333 15.625 11.948923 - 25.411704 21.976762 22.060925 24.414063 - 
10.076831 0.2925115 15.974262 11.831333 10.331333 15.625 11.981955 0.0535876 25.161704 21.976762 21.810925 24.414063 21.990485 
10.326831 0.3435578 15.724262 11.831333 10.081333 15.625 12.020005 0.1353086 24.911704 21.976762 21.560925 24.414063 22.014314 

Table A2.3 - Quick imitation case: numerical example 

2=E  5.2=E  
C *p  1

1Π  1
2Π  2Π  ρ

π
−1

0

 ( )*pV  *p  1
1Π  1

2Π  2Π  ρ
π
−1

0

 ( )*pV  

5.5974562 0.9693337 15.375 14.51277 14.810707 15.625 15.357695 - 26.625377 25.858945 26.290299 24.414063 - 
5.8474562 0.9374234 15.125 14.28777 14.560707 15.625 15.089688 - 26.375377 25.633945 26.040299 24.414063 - 
6.0974562 0.9041042 14.875 14.06277 14.310707 15.625 14.820887 - 26.125377 25.408945 25.790299 24.414063 - 
6.3474562 0.8691712 14.625 13.83777 14.060707 15.625 14.551174 - 25.875377 25.183945 25.540299 24.414063 - 
6.5974562 0.8323644 14.375 13.61277 13.810707 15.625 14.280404 - 25.625377 24.958945 25.290299 24.414063 - 
6.8474562 0.7933453 14.125 13.38777 13.560707 15.625 14.008386 - 25.375377 24.733945 25.040299 24.414063 - 
7.0974562 0.7516596 13.875 13.16277 13.310707 15.625 13.734863 - 25.125377 24.508945 24.790299 24.414063 - 
7.3474562 0.7066719 13.625 12.93777 13.060707 15.625 13.459477 - 24.875377 24.283945 24.540299 24.414063 - 
7.5974562 0.6574457 13.375 12.71277 12.810707 15.625 13.181699 - 24.625377 24.058945 24.290299 24.414063 - 
7.8474562 0.6024948 13.125 12.48777 12.560707 15.625 12.900691 0.9924072 24.375377 23.833945 24.040299 24.414063 24.372833 
8.0974562 0.5391864 12.875 12.26277 12.310707 15.625 12.614966 0.9415823 24.125377 23.608945 23.790299 24.414063 24.105802 
8.3474562 0.4619046 12.625 12.03777 12.060707 15.625 12.321357 0.8872552 23.875377 23.383945 23.540299 24.414063 23.837599 
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 Appendix 3 – Instructions and payoff matrices  

INSTRUCTIONS OF THE EXPERIMENT 

Welcome to this experiment. The instructions are simple.  If you follow them carefully, 
you could make a considerable amount of money, which will be paid to you in cash 
immediately after the experiment. You should note that you should not talk to the other 
participants during the experiment. If you do, it will defeat the purpose of the 
experiment, and we will have to ask you to leave. 

The experiment consists of 5 plays of a game, each of which involves you and some other 
participant in the experiment. This other person will be changed between each play of 
the game, and you will never know who he or she is, and he or she will not know who you 
are. What you do in the experiment will not be divulged to anyone. 

The game is simple. It will last a randomly determined number of rounds. We will explain 
first how this number of rounds is determined, and then we will explain the structure of 
the game that you will be playing.   

The participants in the experiment will elect one of their number as the Round 
Determinator. This participant will be paid a fixed fee of £10 for participating in the 
experiment. The Round Determinator will not play the game but will determine the 
number of rounds in each game. He or she will do this as follows. Before each game the 
Round Determinator will go with one of the experimenters into the side office where 
there is an opaque bag containing 9 blue balls and 1 white ball. The Round Determinator 
will shake the bag and pick one ball from it at random, note the colour, and then replace 
the ball in the bag. He or she will do this repeatedly – until the white ball is drawn. The 
number of draws that is required is the number of rounds that the particular game will 
last. After the game, the Round Determinator will certify to the other participants that 
this procedure was followed, though obviously the Round Determinator will not confirm 
the number of rounds until after the game is finished. This procedure will be repeated 
for each of the 5 games.  You should note that this procedure implies that, at the end of 
any one round, there is a 1 in 10 chance that the game will finish after that round and a 9 
in 10 chance that the game will continue into the next round.   Note also that the number 
of rounds in a game will vary randomly from game to game. 

We now describe the game that you will be playing.  You, and the person with whom you 
are playing, start the game in a particular state, which we call State A. In any round of 
the game, you can choose to change to a new state, which we call State B. Once you have 
changed, you cannot change back. So the decision-problem is simple: all you have to 
decide is whether, and when, you want to change from State A to State B. The 
other person with whom you are playing has exactly the same decision problem.  In any 
round, you decide simultaneously, without knowledge of what the other player is doing. 
Please note that whichever the state you are in, the game will go on until it reaches its 
randomly determined end.  
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We now describe how you will be paid for participating in this experiment. You will 
receive a payment for each of the 5 games, and your payment for the experiment as a 
whole will be the sum of the payments for the 5 games. This final amount will be added to 
your participation fee of £2. 

In any one game the payment is determined in the following way. In each round of a game, 
you have a potential payoff. This depends on the state that you and the other player are 
in that round, and also whether you have decided to change state that round. If you have 
not changed state in a particular round, then the following table gives your potential 
payoff in that round.  

If you have changed state in a particular round, then the following table gives your 
potential payoff in that round.  

These potential payoffs are measured in tokens. The tokens you will earn during each 
game will be converted in cash at the end of the experiment at the conversion rate of 
1000 tokens for £1.   

At the end of each round you will be told in which state you and the other player are and 
what your and the other player’s potential payoffs for that round are.  

Your actual payoff in a particular game is simply given by your potential payoff in the 
round in which the game finishes.   

We repeat that your actual payoff for any game will be the potential payoff in the round 
in which the game finishes. If you have not changed state in that final round, the first 

 

If the other 

player is in State 

A 

If the other 

player is in State 

B 

If you are in  

State A 
1398 1315 

Your potential payoff 

if you have not 

changed state in this 

round 
If you are in  

State B 
1670 1500 

 

If the other 

player is in State 

A 

If the other 

player is in State 

B 

Your potential payoff 

if you have changed 

state in this round (You are in State 

B) 
170 0 
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table above gives your actual payoffs; if you have changed state in that final round, the 
second table above gives your actual payoffs.  

On your desk you have a page titled “The Payoff Tables” reporting the two tables above. 

Your payment for the experiment as a whole will be the sum of your actual payoffs in all 
5 plays of the game, converted into  pounds (at the exchange rate of 1000 tokens = £1),  
plus the participation fee. 

If you are unclear about any aspect of these instructions, please raise your hand and one 
of the experimenters will answer your question. 
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THE PAYOFF TABLES (treatment 1)  

TABLE 1 

 
TABLE 2 

 
THE PAYOFF TABLES (treatment 2) 

TABLE 1 

 
TABLE 2 

 

 If the other player 
is in State A 

If the other player 
is in State B 

If you are in State 
A 1398 1315 

Your potential 
payoff 
if you have not 
changed state in 
this round If you are in State 

B 
1670 1500 

 If the other player 
is in State A 

If the other player 
is in State B 

Your potential 
payoff  
if you have 
changed state in 
this round 

(You are in State 
B) 

170 0 

 If the other player 
is in State A 

If the other player 
is in State B 

If you are in State 
A 

1428 1346 

Your potential 
payoff 
if you have not 
changed state in 
this round If you are in State 

B 
1690 1500 

 If the other player 
is in State A 

If the other player 
is in State B 

Your potential 
payoff  
if you have 
changed state in 
this round 

(You are in State 
B) 

190 0 
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THE PAYOFF TABLES (treatment 3) 

TABLE 1 

 
TABLE 2 

 
THE PAYOFF TABLES (treatment 4) 

TABLE 1 

 
TABLE 2 

 

 If the other player 
is in State A 

If the other player 
is in State B 

If you are in State 
A 1432 1376 

Your potential 
payoff 
if you have not 
changed state in 
this round If you are in State 

B 
1613 1500 

 If the other player 
is in State A 

If the other player 
is in State B 

Your potential 
payoff  
if you have 
changed state in 
this round 

(You are in State 
B) 

113 0 

 If the other player 
is in State A 

If the other player 
is in State B 

If you are in State 
A 1452 1398 

Your potential 
payoff 
if you have not 
changed state in 
this round If you are in State 

B 1627 1500 

 If the other player 
is in State A 

If the other player 
is in State B 

Your potential 
payoff  
if you have 
changed state in 
this round 

(You are in State 
B) 

127 0 


