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di Bari “Aldo Moro”. I lavori riflettono esclusivamente le

opinioni degli autori e non impegnano la responsabilità del
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Abstract

This paper aims to shed new light on ”law of one-price” in the United States’
gasoline market over the period June-2003-December-2019. Specifically, we test
for convergence of the retail prices of gasoline in di↵erent US PADDs, states
and cities using the Local Whittle estimator (LW) and its variants (Robinson
1995, Shimotsu and Phillips 2005). Mean/trend reversion of the relative price
of each unit will imply convergence toward the average price in the US thereby
o↵ering support for the law of one-price. LW estimators allow us to consider
the case where relative gasoline price are fractionally integrated process and
may display long memory implying a slow process of convergence. The results
obtained generally o↵er support for the law of one-price albeit with significant
di↵erences in the rate of convergence between PADDs, States and Cities.

Keywords: Gasoline price, Convergence, Fractional integration, Whittle es-
timator.
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1 Introduction

This paper investigates the Law of one Price (LOP hereafter) in United States gasoline
market over the period June-2003-December-2019 using a long memory approach
which relies on the Local Whittle estimator (LW) and its variants (Robinson 1995,
Shimotsu and Phillips 2005). The LOP states that in the absence of arbitrage or
trade frictions (such as transport costs and tari↵s), and under conditions of perfect
competition and price flexibility (where no individual sellers or buyers have the power
to manipulate prices and prices can freely adjust), identical goods sold in di↵erent
locations must sell for the same price when prices are expressed in a common currency
(Persson, 2008).

The reason to study the LOP on gasoline market lies in the fact that fuel is a
strategic productive factor for the economy of a country in general and, particularly,
for the lives of people and businesses. The retail gasoline price substantially a↵ects
the costs of production and, at the same time, has a significant impact on the mobility
of vehicles and people (Bösch et al., 2018). For the gasoline market, the LOP would
be seen to hold if the di↵erence in prices at-the-pump in di↵erent locations either is,
or converges to zero.

In this paper we focus on the convergence between the retail prices of gasoline
within three sets of US units: Petroleum Administration Defense Districts (PADDs),
States and Cities. Studying the convergence of gasoline prices in the US is particularly
important, both for evaluating the deregulation process that has involved this market
since the 1980s, and because of the significant economic di↵erences that has persisted
in recent years between and within the US states and cities. The US states represent
a particularly relevant case study thanks to a far greater capital and people mobility
compared to that in European states. Indeed, US states share widely interdependent
production processes and federal and state public policies that can certainly have
e↵ects between neighboring states. Yet, despite a much more pronounced integration
process than in Europe, several studies in recent years have shown that there are still
significant price di↵erences between US states. It has been seen that these di↵erences
are partly generated in the various intermediate steps between the price of crude oil
and the price at-the-pump (Blair et al., 2017; Borenstein et al., 1997), and accen-
tuated as a result of structural breaks (Bagnai and Ospina, 2018). With regard to
the gasoline market, within individual countries/regions or in any case in the pres-
ence of homogeneous territories that share the same market, it would be desirable to
have the same price at the pump in order to avoid tax dumping or alterations in the
price of goods due to asymmetries in the price of production factors. For example,
Cárdenas et al. (2017) analyzed the diesel convergence process between gas stations
in France, finding a significant convergence between the various most homogeneous
and close geographic areas. Suvankulov et al. (2012) analyzed the integration process
in Canadian provinces between 2000 and 2010 by observing a substantial convergence
of prices on average but with six cities in the province of Nova Scotia which had a
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divergent pattern compared to the rest of the country. Balaguer and Ripollés (2018)
observe a significant divergence in the price of gasoline in the Spanish provinces sug-
gesting a lack of market integration at regional level. The di↵erent level of prices
can be attributed to transportation costs, taxation, and other explicit barriers. Fur-
thermore, the price convergence can shift an energy tax burden onto the producers
which leads to a competitive disadvantage for firms in high-tax regions (Holmes et al.
(2013); Suvankulov et al. (2012)). To date, most studies on the US gas price conver-
gence process have focused on integrating the 7 PADDs into which the 50 American
states are divided. In particular, Paul et al. (2001) analyze the integration of gasoline
price from January 1983 to December of 1998 in the PADDS and finds a high degree
of market integration in the gasoline markets as evidenced by the Engle and Granger
and Johansen cointegration tests. Ye et al. (2005) investigate the pass-through mech-
anism from wholesale gasoline spot prices to retail gasoline prices on a regional basis.
Their results underline the presence of Asymmetric price transmission (called the
“rockets and feathers phenomenon”3) in all regions with price increases being passed
along faster than price decreases. Two other works reach the same results, looking
respectively at the individual Deltas states (2008) and at individual American cities
(Arano and Velikova, 2009; Chesnes, 2016). Holmes et al. (2013) employ a pair-wise
approach to examine regional integration using State date in the US gasoline market.
Their findings show that a price convergence to the long-run equilibrium depends on
distance and station homogeneity between states. More recently, Blair et al. (2017)
used an error-correction model in a seemingly unrelated regression framework to ex-
amine the di↵erences between PADDs. Their finding suggest that regional di↵erences
exist both in the short run and long run adjustment processes.

This paper attempts to enrich this literature on the LOP by introducing two
significant novelties. The first is methodological in nature since as far as we are aware,
it is the first time that a long memory approach is used in this strand of literature. The
reason for our choice of methodology stems from the fact that the studies conducted
so far have shown how di↵erent methodologies lead to conflicting results with respect
to the convergence process between prices in the di↵erent geographical areas. We
believe that the reason for these contrasting results is mostly due to the fact that
previous studies have always confined the analysis within the I(1)-I(0) world, where
I(1) non-stationary relative prices would indicate lack of convergence while stationary
I(0) relative prices indicate convergence and support for the LOP. The second novelty
lies instead in the geographical areas analyzed. Indeed, so far, given the availability
of the data, the main studies on the subject have concerned the PADDs (e.g. Holmes
et al. (2013); Paul et al. (2001)) or the States (Blair et al., 2017). However, in
addition to o↵ering an updated historical series for the individual PADDs, the Energy

3rockets and feathers” refers to pricing phenomenon occurring when downstream prices react in
a di↵erent manner to upstream price changes, depending on the characteristics of upstream prices
or changes in those prices.
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Information Administration (EIA) o↵ers monthly data for 9 states and 10 cities for
period from 2003 to 2019.

In brief, we exploit the entire information base made available by the EIA to
test the convergence / divergence process through the Local Whittle (LW) estimator
(Robinson 1995) of the fractional integration parameter and its variations (Exact
Local Whittle (ELW) and Feasible Exact Local Whittle (FELW) in order to test the
hypothesis that relative gasoline prices contain a unit root (non convergence) against
the alternative that they are long memory processes implying slow convergence. Our
analysis shows significant di↵erences in the results as compared to those obtained
using Augmented Dickey Fuller (ADF) and the Kwaitowsky, Phillips, Schmidt and
Shin (KPSS) type of tests. In particular, our findings suggest that all series analysed
are convergent but with very di↵erent speeds. In detail, a slow convergence (long
memory process) is observed for PADD3 (Gulf Coast), PADD5 (West Coast) and
then confirmed at the level of States (California, Texas and Washington) and at the
level of Cities (Los Angeles, San Francisco and Huston). Among the cities, two of
four empirical model employed find a slow convergence process is also in the cities of
New York, Cleveland and Miami.

The remainder of the paper is structured as follows: Section 2 describes the data
for the individual PADDs / States / Cities. Section 3 describes the estimation and
testing methodology, Section 4 reports the results, and Section 5 o↵ers some conclu-
sions.

2 Data

We use the monthly data on the Retail Gasoline Prices (Dollars per Gallon) from the
Energy Information Administration (EIA) of the US government at www.eia.gov. The
time series are provided at PADD level which aggregates the 50 states from June 1993
until December 2019. Originally, the 50 American states were divided into five PADDs
(East Coast, Midwest, Gulf Coast, Rocky Mountain, and West Coast) to capture the
five major regions and later the East Coast PADD was further divided into 3: 1A
(New England), PADD 1B (New York to Maryland), and PADD 1C (Virginia to
Florida). This outline derives from the II world war, when U.S. government equipped
a chain to supply the war machine with fuel, and has been kept beyond the conflict
until today as a geographical framework for data collection being managed by EIA.

The EIA also collects and provides data series for 9 states (Florida, Massachusetts,
Minnesota, New York, Ohio, Texas, Washington, Colorado and California) and 10
cities (Boston, Chicago, Denver, Houston, Los Angeles, Miami, New York City, San
Francisco, Cleveland and Seattle). Unlike previous studies (e.g. (Blair et al., 2017;
Paul et al., 2001), it was therefore decided not to analyze only the PADDs but to
o↵er a more detailed analysis at the level of single states and specific cities in order
to observe if there was heterogeneity between geographical areas. The time series are
available for PADDs, States and Cities from June 2003 until December 2019, so our
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analysis is carried out in this temporal spam. Figure 1 shows in detail the partition
in PADDs and identifies the states and cities object of our analysis.

(please insert Figure 1 about here)

Figures 2, 3 and 4, on the other hand, show the trend of the retail gasoline price
for the PADDs, States and Cities analyzed (in logarithms).

The PADD level analysis o↵ers a general overview of the gasoline price evolution
that does not take into consideration the price dynamics reflecting the specific features
of states and cities. Therefore, to deal with these probable di↵erences due to the
level of aggregation which can be caused by heterogeneity within each unit, we also
look at convergence of gasoline prices using data at State and City levels. In this
respect, Figure 3 shows the price evolution of the 9 states for which EIA collects
data, while Figure 4 reports the prices of the 10 cities available. For the purpose
of this study, such a comparison between results for di↵erent sets of units, aims at
testing the robustness of the results in that, if there is homogeneity of the price trends
at all levels of aggregation, our analysis should deliver consistent results. On the other
hand, heterogeneity within the di↵erent levels of data aggregation (i.e. the case where
Houston is very di↵erent from the rest of Texas which is very di↵erent from the rest of
the states in PADD3) is likely to returns di↵erent and even contrasting results. This
will all be confirmed or otherwise by the long memory approach used here, whose
results will shed some light not only on whether the law of one-price (convergence
between gasoline prices) holds in the US, but will also allow us to understand the
degree of heterogeneity/homogeneity between the units.

At first glance, Figure 2 seems to reveal similar evolution in the prices across
the 7 PADDs for the whole time-span. Although the increasing trends, the gasoline
prices are a↵ected by a significant volatility between 2003 and 2008. In 2008, indeed,
the world economic and financial crisis caused a structural break so that PADD’
gasoline prices collapsed. From then to 2011, prices turned to rise until 2011 when
the price evolution became stable for almost three years. In 2014, prices dramatically
collapsed again, then turned to slowly increase. Figure 3 reports the gasoline price
of the 9 US states collected by EIA. From this perspective, the graphical illustration
confirm an homogeneous trend for 8 out of 9 states. These trends, in turn, reflect
those of the PADDs they belong to. By contrast, in California the situation appears
changing since 2015: the gasoline price evolution takes di↵erent pathway compared
to the PADD5 (West Coast). The heterogeneity emerges due to data disaggregation.
Figure 4 breaks further down the data by considering gasoline price at the 10 city
level, as data are provided by EIA. In this case, 4 out of 10 cities lead to heterogeneous
pathways compared to the PADDs level. This happens for Los Angeles, San Francisco
and Seattle belonging to PADD5, and, with lower di↵erences for Miami, included in
PADD1C (Lower Atlantic). The evidence raised by city disaggregation confirms the
signal concerning the West Coast conveyed by Figure 3. Importantly, the two cities
located in California register a greater gasoline price increase in the last 5 years than
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what happens at PADD level, that is the result obtained with the country’ level
disaggregation. By contrast, Seattle shows a di↵erent price evolution, even though
no di↵erences were found out between PADD and state level (Washington).

Instead, Miami’ prices registered a spike in 2017, before immediately declining
and keep on following up this gait. The emerging trend in Miami, is di↵erent from
the PADD1C and the Florida ones.

(please insert Figure 2 about here)

(please insert Figure 3 about here)

(please insert Figure 4 about here)

This first attempt of interpreting the U.S. gasoline price time series shall be com-
pared to the analytic computation presented in the section 4 in order to realize if the
series follow a reasonable (stationary) or a random walk path.

3 Methodology

The methodology employed is in line with (Barassi et al., 2011; Strazicich and List,
2003) previously adopted for CO2 Emissions. In detail we carried out unit root,
stationary and fractional integration tests on the basis that, if retail gasoline prices
between a set of geographical areas (in our case we consider three di↵erent areas:
PADDs, States, Cities) are converging (in a stochastic sense) then the log of the ratio
of gasoline prices in the geographic are g and the average of gasoline prices of the
set of all geographic area (RPgt) should be a stationary or at least a mean (trend)
reverting process. First of all we model the natural logarithm of a geographic area’s
gasoline prices (RPgt) as:

RPgt = RP ⇤
g + ugt (1)

where RP ⇤
g is a time invariant equilibrium di↵erential,

RP ⇤
g =

GRPg

N�1
PN

g=1 GRPg

(2)

GRPg is the gasoline price of a specific area g and ugt is a time and area specific
deviation from that di↵erential which can be written as:

ugt = cg0 + ✏gt (3)

where cg0 is the initial deviation from the equilibrium di↵erential and ✏jt are the gth

geographic area each with mean zero and finite variance �2
j . Combining equations (2)

and (4) we get:
RPgt = RP ⇤

g + cj0 + ✏gt (4)
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Testing for non-convergence is then done by testing whether the relative gasoline
prices in geographic area g, ygt = (RPgt � RP ⇤

g ) contain a unit root (or are indeed
trend stationary or mean/trend reverting). In conducting the test, equation (5) is

expanded to include a linear time trend (which may be area specific) such that after
a re-ordering of terms, equation (5) can be re-written as:

(RPgt �RP ⇤
g ) = cg0 + �gt+ ✏gt (5)

The term on the left hand side of equation (5) is then tested for a unit root (trend
stationarity) against the alternative of trend stationarity/mean reversion and long
memory (unit root). If a unit root is rejected, for a given initial deviation from
equilibrium cg0, stationarity/mean reversion (and long memory) of relative emissions
can be taken as evidence of convergence of gasoline prices.

It is well known that standard unit root tests may provide incorrect results in the
presence of structural breaks in the deterministic terms. Also, the tests used may
have low power near the alternative, and moreover, they cannot provide information
about the level of persistence of the series. In our analysis we consider the possibility
that relative gasoline prices are actually mean/trend reverting long memory processes
and that is the reason why standard unit roots or stationarity tests may fail to o↵er
consistent findings with regard to their order of integration (see appendix for a short
introduction on long memory). Fractional integration I(d) with 0 < d < 1 of relative
gasoline prices implies their high persistence (even covariance non-stationarity) but
mean/trend reversion in the long run. This translates into the occurrence of perhaps
slow convergence of a gasoline price relative to the national average price in the long
run.

The use of fractional integration may also be motivated by the presence of occa-
sional breaks in the price series which otherwise would be only weakly autocorrelated.
This can be appealing in the case of gasoline prices because cities o country regula-
tions, new technologies or catastrophic events (e.g. storms, earthquakes, epidemics),
although infrequent, may still cause shifts in the deterministics of a specific geograph-
ical area’s gasoline price series. Moreover, Granger and Hyung (2004) show that frac-
tional integration and infrequent breaks may be virtually impossible to distinguish
from each other and adopting fractional integration modelling strategies produce good
forecasts.

4 Results

The results of our analysis are presented as follows. First, we test the relative gasoline
prices of the various units for the null of a unit root/stationarity by means of ADF
and KPSS. Then, we consider the possiblity that relative gasoline prices may be long
memory processes and using the Local Whittle (LW), Exact Local Whittle (ELW),
Feasible Exact Local Whittle estimators (FELW) and Feasible Exact Local Whittle
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estimators with de-trending (FELW dt) we test for the order of integration d = 1
versus a fractional alternative, as discussed above. Our analysis is conducted for
di↵erent geographical level (PADDs, States, Cities) to take into account any potential
di↵erences due to levels of data aggregation.
Table 1 provides the results of ADF unit root test and KPSS stationary test by
including the trend and the constant in the auxiliary regressions. The ADF test is
carried out under the null hypothesis that the series contains a unit root, which means
that if the null hypothesis is not rejected, the series follows a random walk process
(d̂=1) and as such it is not converging toward the cross-unit mean.
For the ADF test the issue of the choice of the optimal lag was addressed by means of
the Modified Akaike’s Information Criterion (MAIC). Table 1 shows that ADF tests
cannot reject the null for all series (except for Denver), implying that the series are
not converging. The KPSS test mostly confirms the results of ADF tests. However, it
provides contrasting evidence in some cases as for example it cannot reject the null of
stationary for one PADD (PADD1B), two States (Colorado and Massachussetts) and
three cities (Boston, Denver and Miami) thus providing some evidence of convergence.

(please insert Table 1 about here)

Tables 2, 3 and 4 display the results of the LW-based tests versus the alternative
of Long Memory for PADD, States and Cities, respectively. These findings report the
estimated order of integration (d̂) as well as the test statistic for the null that d = 1
obtained by considering di↵erent bandwidths between 0.575 and 0.65 following the
approach suggested by Shimotsu and Phillips (2006)1. This statement applies to all
the four methods used to test for long memory (LW, ELW, FELW, FELW dt).

In interpreting long memory tests it is worth bearing in mind the following impli-
cations of the di↵erent values of the estimated order of integration d for the relative
price series:

• A series with order of integration I(0  d < 1
2) is mean/trend reverting and

covariance stationary and therefore convergent (albeit slowly if d > 0);

• A series with order of integration I(12  d < 1) is still mean/trend reverting but
not covariance stationary. The implication of this is that although the series
still converges, it does that very slowly.

In reading the Tables, it is also recommended to pay particular attention to the
values returned by FELW dt when the series contains a trend as it is more precise.

1The test statistic is then compared to the relevant quantiles reported in table A1 in Appendix.
It is worth noticing that as suggested by Shimotsu and Phillips (2006) using a bandwidth between
[0.6, 0.65] provides a distribution of the test statistic under the null hypothesis H0 : d̂ = 1 where the
0.5 quantile (median) is closer to the mean value which is closer to 0 as ↵ ! 6.5. (Barassi et al.,
2011; Dubois et al., 2004)
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In the table 2, the fractional integration tests show strong evidence of convergence for
all PADDs, and for 4 of them (PADD1A, PADD1B, PADD2, PADD4) with an order
of integration of relative gasoline price almost always less the 0.5, and for PADD1C
PADD3 and PADD5 with fractional integration order between 0.5 - 0.7. In detail,
for the PADD1A (New England) there is evidence that the fractional integration
order goes from 0.2305 through 0.4327 (in this case, the de-trending process is not
necessary to be considered). For PADD1B (Central Atlantic), results suggest that
the integration order revolves around 0. This implies that the series is pretty much
I(0) stationary and takes a convergent pathway. For PADD1C (Lower Atlantic), the
fractional integration order of FELW dt lies between 0.4365 and 0.6291, and for this
range of values, the trend matters. There is, therefore, some good evidence of a
long memory process that leads to a relatively slow convergence. For PADD2 (Mid
West) the fractional integration order of FELW is stable around 0.3. It means that the
long memory dynamism leads to a stationary gait resulting in convergence both when
considering trend and no trend procedures. In PADD3 (Gulf Coast), the gasoline price
series is always ”non covariance-stationary” (both in case of trend and de-trend). The
estimation of d̂ provides values around 0.7 leading to the interpretation that it is still
mean/trend reverting and characterised by a very slow convergence. For the PADD
4 (Rocky Mountain) the order of integration of FELW dt ranges from 0.04 and (that
are not distinguishable from 0) to 0.10 implying a strong evidence of convergence.
Finally, for PADD5 (West Coast), the fractional integration order is constant around
0.65, as values resulted with de-trending procedure shall be considered. This result
suggests that convergence occurs slowly and with a no stationarity in covariance.

(please insert Table 2 about here)

From Table 3 we observe strong evidence of convergence with stationarity in co-
variance for the states of Colorado, Florida, Massachussets, Minnesota, New York and
Ohio, with an order of integration is always < 0.5 regardless of the value of the band-
width ↵ and for all the four methods employed. Note that, however, the relative price
of gasoline in Colorado is very likely to be an I(0) stationary ”short-memory” pro-
cess. On the other hand, relative prices of California, Texas and Washington report
an order of integration always above 0.5 indicating a possibly very slow convergence
to ”one-price” due to mean(trend) reversion but non-stationarity in covariance.

(please insert Table 3 about here)

Table 4 reports the results for the 10 American cities for which data are available.
Again, in this case, the null of a unit root for relative prices of gasoline is rejected
in almost all cases and very convincingly for some cities like Boston, Chicago and
Denver where the estimates for d are always < 0.5 implying mean/trend reversion
and covariance-stationarity albeit slow convergence. Furthermore, whilst there are
no gasoline prices reporting an order of integration close to 0, relative prices in New
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York City have order of integration (d̂) ranging between 0.3113 and 0.5214 (in FELW
model) and are mean reverting long memory processes but possibly not covariance-
stationary. The same situation occurs for the cities of Cleveland and Seattle where
the estimated values of d are found to be greater than 0.5 when using LW, ELW
and FELW, but slighly below the covariance non-stationarity threshold when FELW
de-trending is used (this ranges between 0.37 and 0.48 for Cleveland and between
0.44 and 0.45 for Seattle). The city of Miami, in contrast with the tendency emerged
in its state (Florida), shows an integration order between 0.5944 and 0.6481 with
FELW dt, implying a slower convergence process and non-stationarity in covariance.
On the contrary, the cities of Los angeles and San Francisco present (d̂) values in
line with the state of California with a range between 0.62 and 0.65. These results
suggest, non-stationarity and very slow convergence. Houston has the highest (d̂)
values compared to all other cities (also in line with the state of Texas) suggesting a
slower convergence process compared to the other cities (the (d̂) values are higher in
all estimated models ranging between 0.69 and 0.72).

(please insert Table 4 about here)

It is apparent that, overall, the estimated orders of (fractional) integration at
PADD, State and City levels are in sharp contrast with those obtained by means of
the ADF and KPSS type of tests. Our results clearly suggest that the law of one-price
in US gasoline price market seems to hold, although the speed of convergence may
be di↵erent between (and within) PADDs, states and cities. The change in speed of
convergence area by area, may be linked to heterogeneous development of the private
and public initiatives at State level, and mainly to the demand dynamics at City
level. In this respect, as found by Holmes et al. (2013), the heterogeneous evolution
of the price speed convergence is constrained by di↵erent taxation policies issued at
state level, di↵erent capacity of the refineries as well as the number of retailers and
the payload of the pipelines connecting the refineries with U.S. regions. Note that,
this is in line with Blair et al. (2017) who argued that both in the short and long run
there is heterogeneity in the speed of convergence that hinders the accomplishment
of the law of one-price.

5 Conclusions

The retail gasoline may appear to be one of the sectors in which there is inevitable
convergence in the US market, thanks to the homogeneity of the product, the dereg-
ulation policies of recent years and the full availability of price information. In this
paper we have used an alternative approach to studying the convergence of gasoline
prices between American PADDs, states and cities. Previous studies using di↵er-
ent methodologies achieved mixed results on the process of convergence between US
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PADDs, States and Cities. Using the Local Whittle estimator of the fractional inte-
gration parameter and its variations (Exact Local Whittle and Feasible Exact Local
Whittle) we have tested the hypothesis that relative retail gasoline prices contain a
unit root (implying non-convergence) against the alternative that they are fraction-
ally integrated long memory processes (implying convergence albeit a slow one). This
has allowed us to consider a more flexible alternative than the usual stationarity with
weak dependence implied by ADF type of tests. As it emerges from our analysis, the
convergence process is not achievable at the same time or speed in di↵erent US geo-
graphical areas. This may be due to the existence of a variety of institutional actors,
geographically dispersed markets due to transport constraints and di↵erent taxation.
In detail our results suggest that while for 2 of our 7 PADDs, there is evidence to
suggest that relative gasoline prices are not fractionally integrated processes and are
instead I(0), evidence points at fractional integration of relative prices of gasoline
for the remaining PADDs. These findings support the law of one-price in the long
run and holds also among American states and cities. The results are fairly consis-
tent for states and their cities like in the case of California, for Los Angeles and San
Francisco and Texas with Houston. We found mean reversion also for others cities
like New York City, Cleveland and Miami and their relative states (New York, Ohio,
Colorado). However, for these states and cities the relative price series showed non
stationarity in covariance and thus very slow convergence patterns.
We do not provide evidence of the numerical on time-price-slope to understand
whether a slower convergence process is linked to a high price level so that decreasing
like a feather toward the convergence point, but it is clear that the issue of being
no co-variance stationary can generate spikes in increase such that turning to the
convergence point of cross-sectional mean (the one-price) could happen much more
slowly. Given the di↵erence in our results, compared to the other studies, further
analyses may be conducted on other markets (e.g. the electricity market) and in
other geographical contexts (e.g. European countries, regions).
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Table 1 Unit Root tests for PADDs, Countries and Cities series - ADF vs.
KPSS

Series ADF C&T KPSS C&T Convergence?
(Lag - MAIC) (Bandwith)

PADDs
PADD1A -1.141(10) c 0.272(8) c+t NO
PADD1B -2.042(11) c 0.076(3) c+t YES(KPSS)
PADD1C -1.357(10) c+t 0.311(9) c+t NO
PADD2 -2.211(13) c+t 0.372(7) c+t NO
PADD3 -2.348(10) c+t 0.329(10) c+t NO
PADD4 -1.357(12) c 0.264(4) c+t NO
PADD5 -2.0530(6) c+t 0.308(10) c+t NO

States
California -1.683(7) c+t 0.320(10) c+t NO
Colorado -1.415(14) c 0.137(2) c+t YES(KPSS)
Florida -1.182(10) c+t 0.197(7) c+t NO
Massachusetts -2.159(10) c 0.141(6) c YES(KPSS)
Minnesota -1.321(10) c 0.377(8) c+t NO
New York -0.039(11) c 0.302(6) c+t NO
Ohio -2.438(14) c+t 0.300(7) c+t NO
Texas -2.248(10) c+t 0.324(10) c+t NO
Washington -1.732(12) c+t 0.298(9) c+t NO

Cities
Boston -1.967(10) c+t 0.146(8) c+t YES(KPSS)
Chicago -1.346(13) c 0.391(6) c+t NO
Cleveland -2.589(9) c+t 0.359(9) c+t NO
Denver -5.853(0) c+t 0.076(1) c+t YES(both)
Houston -2.256(8) c+t 0.297(10) c+t NO
Los Angeles -2.240(7) c+t 0.255(10) c+t NO
Miami -0.246(10) c+t 0.159(9) c+t YES(KPSS)
New York City -1.877(10) c+t 0.192(7) c+t NO
San Francisco -1.432(7) c+t 0.352(10) c+t NO
Seattle -1.705(10) c+t 0.302(9) c+t NO

ADF critical values with const.+trend: -4.008 (1%); -3.433 (5%); -3.140 (10%)
ADF critical values with const.: -3.465 (1%); -2.876 (5%); -2.574 (10%)
KPSS critical values with const.+trend: 0.216 (1%); 0.146 (5%); 0.119 (10%)
KPSS critical values with const.: 0.739 (1%); 0.463 (5%); 0.347 (10%)
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Table 2 Long memory test for PADD’ gasoline price time series

LW ELW FELW FELW dt

PADD1A - 199 obs.

↵=0.575 d̂ 0.2305 0.2751 0.2863 0.2763

H0 : d̂ = 1 -3.4415 -3.2420 -3.1918 -3.2364

↵=0.6 d̂ 0.2902 0.3376 0.3397 0.3282

H0 : d̂ = 1 -3.4040 -3.1767 -3.1666 -3.2220

↵=0.625 d̂ 0.3314 0.3770 0.3736 0.3616

H0 : d̂ = 1 -3.4739 -3.2371 -3.2549 -3.3172

↵=0.65 d̂ 0.3914 0.4408 0.4327 0.4207

H0 : d̂ = 1 -3.3888 -3.1137 -3.1587 -3.2253
PADD1B - 199 obs.

↵=0.575 d̂ -0.0056 0.0433 0.0009 -0.1976

H0 : d̂ = 1 -4.4971 -4.2787 -4.4683 -4.4683

↵=0.6 d̂ 0.0428 0.0714 0.0496 -0.1238

H0 : d̂ = 1 -4.5668 -4.4534 -4.5577 -5.3894

↵=0.625 d̂ 0.1030 0.1033 0.1006 -0.0408

H0 : d̂ = 1 -4.6608 -4.6595 -4.6736 -5.4081

↵=0.6 d̂ 0.1809 0.1556 0.1746 0.0728

H0 : d̂ = 1 -4.5606 -4.7013 -4.5954 -5.1624
PADD1C - 199 obs.

↵=0.575 d̂ 0.4365 0.4506 0.4860 0.3929

H0 : d̂ = 1 -2.5020 -2.4571 -2.2986 -2.7152

↵=0.6 d̂ 0.4648 0.4775 0.5155 0.4316

H0 : d̂ = 1 -2.5666 -2.5057 -2.3235 -2.7259

↵=0.625 d̂ 0.5363 0.5492 0.5943 0.6298

H0 : d̂ = 1 -2.4094 -2.3423 -2.1080 -1.9239

↵=0.65 d̂ 0.5504 0.5784 0.5992 0.6291

H0 : d̂ = 1 -2.5031 -2.3474 -2.2318 -2.0653
PADD2 - 199 obs.

↵=0.575 d̂ 0.3130 0.2482 0.3201 0.2232

H0 : d̂ = 1 -3.0724 -3.3620 -3.0408 -3.4741

↵=0.6 d̂ 0.2428 0.2190 0.2636 0.1738

H0 : d̂ = 1 -3.6315 -3.7455 -3.5517 -3.9623

↵=0.625 d̂ 0.2867 0.2608 0.3086 0.2285

H0 : d̂ = 1 -3.7062 -3.8412 -3.5926 -4.0089

↵=0.65 d̂ 0.2998 0.2801 0.3236 0.2518

H0 : d̂ = 1 -3.8984 -4.0082 -3.7663 -4.1658
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Table 2 continued

LW ELW FELW FELW dt

PADD3 - 199 obs.

↵=0.575 d̂ 0.7568 0.6251 0.7577 0.7124

H0 : d̂ = 1 -1.0878 -1.6764 -1.0835 -1.2862

↵=0.6 d̂ 0.7030 0.6311 0.7165 0.6832

H0 : d̂ = 1 -1.4245 -1.7693 -1.3597 -1.5930

↵=0.625 d̂ 0.7589 0.6731 0.7524 0.7143

H0 : d̂ = 11 -1.2549 -1.6986 -1.2865 -1.4844

↵=0.65 d̂ 0.7237 0.6881 0.7318 0.6970

H0 : d̂ = 1 -1.5381 -1.7367 -1.4930 -1.6868
PADD4 - 199 obs.

↵=0.575 d̂ -0.0066 -0.0334 -0.0645 0.0579

H0 : d̂ = 1 -4.5014 -4.6214 -4.7605 -4.7309

↵=0.6 d̂ 0.0240 -0.0009 -0.0210 -0.1940

H0 : d̂ = 1 -4.6809 -4.8000 -4.8963 -4.8890

↵=0.625 d̂ 0.0778 0.0579 0.0493 0.0452

H0 : d̂ = 1 -4.7931 -4.8955 -4.9398 -4.9615

↵=0.65 d̂ 0.1274 0.1156 0.1116 0.1042

H0 : d̂ = 1 -4.8583 -4.9243 -4.9462 -4.9877
PADD5 - 199 obs.

↵=0.575 d̂ 0.7293 0.7609 0.7738 0.6637

H0 : d̂ = 1 -1.2108 -1.0694 -1.0118 -1.5038

↵=0.6 d̂ 0.6826 0.7707 0.7243 0.6396

H0 : d̂ = 1 -1.5223 -1.0995 -1.3224 -1.7284

↵=0.625 d̂ 0.7185 0.7354 0.7445 0.6576

H0 : d̂ = 1 -1.4627 -1.3747 -1.3278 -1.7791

↵=0.65 d̂ 0.6836 0.6991 0.6828 0.6457

H0 : d̂ = 1 -1.7615 -1.6756 -1.7659 -1.9728
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Table 3 Long memory test for State’ gasoline price time series

LW ELW FELW FELW dt

California - 199 obs.

↵=0.575 d̂ 0.7516 0.7781 0.7768 0.6562

H0 : d̂ = 1 -1.1110 -0.9925 -0.9983 -1.5374

↵=0.6 d̂ 0.6883 0.7503 0.7073 0.6309

H0 : d̂ = 1 -1.4950 -1.1976 -1.4039 -1.7701

↵=0.625 d̂ 0.7433 0.7596 0.7572 0.6510

H0 : d̂ = 1 -1.3338 -1.2492 -1.2616 -1.8134

↵=0.65 d̂ 0.7162 0.7459 0.7208 0.6408

H0 : d̂ = 1 -1.5801 -1.4149 -1.5545 -2.0000
Colorado - 199 obs.

↵=0.575 d̂ 0.0069 0.0503 -0.0103 -0.1296

H0 : d̂ = 1 -4.4414 -4.2471 -4.5180 -5.0515

↵=0.6 d̂ 0.0032 0.0494 -0.0134 -0.1217

H0 : d̂ = 1 -4.7807 -4.5588 -4.8601 -5.3797

↵=0.625 d̂ 0.0496 0.0698 0.0329 -0.0606

H0 : d̂ = 1 -4.9384 -4.8333 -5.0251 -5.5110

↵=0.65 d̂ 0.0795 0.0838 0.0647 -0.0158

H0 : d̂ = 11 -5.1254 -5.1013 -5.2077 -5.6558
Florida - 199 obs.

↵=0.575 d̂ 0.3196 0.3620 0.3885 0.0651

H0 : d̂ = 1 -3.0429 -2.8533 -2.7346 -4.1808

↵=0.6 d̂ 0.3610 0.3952 0.4224 0.1580

H0 : d̂ = 1 -3.0645 -2.9004 -2.7700 -4.0382

↵=0.625 d̂ 0.4451 0.4613 0.4898 0.2960

H0 : d̂ = 1 -2.8836 -2.7993 -2.6513 -3.6583

↵=0.65 d̂ 0.4986 0.5035 0.5271 0.3833

H0 : d̂ = 1 -2.7919 -2.7643 -2.6330 -3.4337
Massachussets - 199 obs.

↵=0.575 d̂ 0.1092 0.1529 0.1404 0.1415

H0 : d̂ = 1 -3.9837 -3.7883 -3.8443 -3.8395

↵=0.6 d̂ 0.1745 0.2059 0.2040 0.2029

H0 : d̂ = 1 -3.9590 -3.8084 -3.8177 -3.8228

↵=0.625 d̂ 0.1977 0.2181 0.2209 0.2190

H0 : d̂ = 1 -4.1687 -4.0627 -4.0486 -4.0581

↵=0.65 d̂ 0.2596 0.2822 0.2879 0.2846

H0 : d̂ = 1 -4.1222 -3.9966 -3.9650 -3.9829
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Table 3 continued

LW ELW FELW FELW dt

Minnesota - 199 obs.

↵=0.575 d̂ 0.3668 0.28299 0.3863 0.3369

H0 : d̂ = 1 -2.8317 -3.2069 -2.7447 -2.9656

↵=0.6 d̂ 0.2832 0.2435 0.3142 0.2684

H0 : d̂ = 1 -3.4379 -3.6280 -3.2890 -3.5086

↵=0.625 d̂ 0.3218 0.3027 0.3604 0.3198

H0 : d̂ = 1 -3.5242 -3.6234 -3.3234 -3.5345

↵=0.65 d̂ 0.3691 0.3564 0.4057 0.3693

H0 : d̂ = 1 -3.5127 -3.5833 -3.3091 -3.5117
New York - 199 obs.

↵=0.575 d̂ 0.1693 -0.0410 0.2401 0.0750

H0 : d̂ = 1 -3.7148 -4.6553 -3.3983 -4.1366

↵=0.6 d̂ 0.2180 0.2812 0.2709 0.1120

H0 : d̂ = 1 -3.7505 -3.4474 -3.4967 -4.2587

↵=0.625 d̂ 0.2740 0.3867 0.3147 0.1656

H0 : d̂ = 1 -3.7723 -3.1870 -3.5608 -4.3357

↵=0.65 d̂ 0.3459 0.4796 0.3785 0.2425

H0 : d̂ = 1 -3.6418 -2.8972 -3.4602 -4.2174
Ohio - 199 obs.

↵=0.575 d̂ 0.3829 0.3223 0.3861 0.2742

H0 : d̂ = 1 -2.7596 -3.0306 -2.7454 -3.2459

↵=0.6 d̂ 0.3362 0.2969 0.3448 0.2419

H0 : d̂ = 1 -3.1833 -3.3721 -3.1421 -3.6359

↵=0.625 d̂ 0.3874 0.3385 0.3877 0.2998

H0 : d̂ = 1 -3.1830 -3.4372 -3.1818 -3.6383

↵=0.65 d̂ 0.3232 0.2966 0.3345 0.2507

H0 : d̂ = 1 -3.7685 -3.9163 -3.7055 -4.1718
Texas - 199 obs.

↵=0.575 d̂ 0.6407 0.5143 0.6810 0.6950

H0 : d̂ = 1 -1.6068 -2.1720 -1.4267 -1.3640

↵=0.6 d̂ 0.6223 0.5553 0.6649 0.6820

H0 : d̂ = 1 -1.8112 -2.1327 -1.6070 -1.5250

↵=0.625 d̂ 0.6893 0.6358 0.7205 0.7152

H0 : d̂ = 1 -1.6144 -1.8922 -1.4525 -1.4799

↵=0.65 d̂ 0.6490 0.6511 0.6909 0.6939

H0 : d̂ = 1 -1.9543 -1.9427 -1.7207 -1.7044
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Table 3 continued

LW ELW FELW FELW dt

Washington - 199 obs.

↵=0.575 d̂ 0.6389 0.5283 0.6279 0.6457

H0 : d̂ = 1 -1.6149 -2.1097 -1.6642 -2.3884

↵=0.6 d̂ 0.6146 0.5386 0.6346 0.4812

H0 : d̂ = 1 -1.8481 -2.2130 -1.7525 -2.4880

↵=0.625 d̂ 0.6593 0.5593 0.6394 0.5480

H0 : d̂ = 1 -1.7704 -2.2899 -1.8736 -2.3487

↵=0.65 d̂ 0.6272 0.5361 0.6171 0.4961

H0 : d̂ = 1 -2.0757 -2.5826 -2.1319 -2.8058
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Table 4 Long memory test for City’ gasoline price time series

LW ELW FELW FELW dt

Boston - 199 obs.

↵=0.575 d̂ 0.3087 0.2997 0.3560 0.2374

H0 : d̂ = 1 -3.0918 -3.1319 -2.8801 -3.4105

↵=0.6 d̂ 0.3764 0.3365 0.4075 0.3002

H0 : d̂ = 1 -2.9907 -3.1822 -2.8417 -3.3563

↵=0.625 d̂ 0.4140 0.3571 0.4320 0.3352

H0 : d̂ = 1 -3.0450 -3.3409 -2.9513 -3.4545

↵=0.65 d̂ 0.4534 0.4064 0.4736 0.3926

H0 : d̂ = 1 -3.0432 -3.3048 -2.9307 -3.3818
Chicago - 199 obs.

↵=0.575 d̂ 0.1502 0.1432 0.1402 0.1209

H0 : d̂ = 1 -3.8002 -3.8317 -3.8453 -3.9315

↵=0.6 d̂ 0.1348 0.1362 0.1368 0.1190

H0 : d̂ = 1 -4.1496 -4.1429 -4.1396 -4.2250

↵=0.625 d̂ 0.1697 0.1766 0.1765 0.1593

H0 : d̂ = 1 -4.3143 -4.2784 -4.2788 -4.3685

↵=0.65 d̂ 0.1985 0.2120 0.2119 0.1959

H0 : d̂ = 1 -4.4628 -4.3871 -4.3879 -4.4771
Cleveland - 199 obs.

↵=0.575 d̂ 0.6361 0.5287 0.5929 0.4886

H0 : d̂ = 1 -1.6273 -2.1075 -1.8206 -2.2872

↵=0.6 d̂ 0.5052 0.4412 0.4946 0.3855

H0 : d̂ = 1 -2.3728 -2.6797 -2.4236 -2.9473

↵=0.625 d̂ 0.5606 0.4811 0.5352 0.4407

H0 : d̂ = 1 -2.2831 -2.6965 -2.4153 -2.9063

↵=0.65 d̂ 0.4779 0.4254 0.4722 0.3771

H0 : d̂ = 1 -2.9070 -3.1992 -2.9388 -3.4682
Denver - 199 obs.

↵=0.575 d̂ 0.1638 0.1425 0.1628 -0.1797

H0 : d̂ = 1 -3.7397 -3.8351 -3.7440 -5.2757

↵=0.6 d̂ 0.1491 0.1409 0.1497 -0.1669

H0 : d̂ = 1 -4.0808 -4.1202 -4.0779 -5.5964

↵=0.625 d̂ 0.1871 0.1553 0.1823 -0.1018

H0 : d̂ = 1 -4.2241 -4.3892 -4.2489 -5.7250

↵=0.65 d̂ 0.2157 0.1666 0.2085 -0.0458

H0 : d̂ = 1 -4.3668 -4.6401 -4.4068 -5.8229
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Table 4 continued

LW ELW FELW FELW dt

Houston - 199 obs.

↵=0.575 d̂ 0.6823 0.5023 0.7074 0.7067

H0 : d̂ = 1 -1.4209 -2.2260 -1.3087 -1.3118

↵=0.6 d̂ 0.6446 0.5778 0.6855 0.6845

H0 : d̂ = 1 -1.7047 -2.0248 -1.5084 -1.5133

↵=0.625 d̂ 0.7247 0.6953 0.7589 0.7296

H0 : d̂ = 1 -1.4304 -1.5835 -1.2530 1.4050

↵=0.65 d̂ 0.6727 0.7604 0.7337 0.6972

H0 : d̂ = 1 -1.8221 -1.3338 -1.4825 -1.6861
Los Angeles - 199 obs.

↵=0.575 d̂ 0.6423 0.6790 0.6833 0.6404

H0 : d̂ = 1 -1.5997 -1.4354 -1.4163 -1.6082

↵=0.6 d̂ 0.6302 0.7065 0.6794 0.6262

H0 : d̂ = 1 -1.7736 -1.4078 -1.5374 -1.7927

↵=0.625 d̂ 0.6783 0.7144 0.7041 0.6505

H0 : d̂ = 1 -1.6714 -1.4839 -1.5376 -1.8160

↵=0.65 d̂ 0.6535 0.7021 0.6828 0.6344

H0 : d̂ = 1 -1.9290 -1.6587 -1.7660 -2.0353
Miami - 199 obs.

↵=0.575 d̂ 0.4750 0.5961 0.5851 0.5944

H0 : d̂ = 1 -2.3478 -1.8062 -1.8555 -1.8138

↵=0.6 d̂ 0.5369 0.6359 0.6225 0.6238

H0 : d̂ = 1 -2.2209 -1.7463 -1.8103 -1.8043

↵=0.625 d̂ 0.5864 0.6671 0.6535 0.6463

H0 : d̂ = 1 -2.1492 -1.7296 -1.8006 -1.8381

↵=0.65 d̂ 0.5980 0.6481 0.6466 0.6481

H0 : d̂ = 1 -2.2381 -1.9593 -1.9674 -1.9591
New York City - 199 obs.

↵=0.575 d̂ 0.3113 0.3793 0.3969 0.2024

H0 : d̂ = 1 -3.0798 -2.7760 -2.6971 -3.5672

↵=0.6 d̂ 0.3879 0.4323 0.4554 0.2851

H0 : d̂ = 1 -2.9357 -2.7227 -2.6117 -3.4287

↵=0.625 d̂ 0.4458 0.4544 0.4814 0.3305

H0 : d̂ = 1 -2.8799 -2.8351 -2.6947 -3.4790

↵=0.65 d̂ 0.5179 0.4940 0.5214 0.3944

H0 : d̂ = 1 -2.6840 -2.8170 -2.6650 -3.3717
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Table 4 continued

LW ELW FELW FELW dt

San Francisco - 199 obs.

↵=0.575 d̂ 0.7153 0.6822 0.7523 0.6480

H0 : d̂ = 1 -1.2734 -1.4213 -1.1076 -1.5743

↵=0.6 d̂ 0.6353 0.6705 0.6047 0.6181

H0 : d̂ = 1 -1.7489 -1.5803 -1.8957 -1.8316

↵=0.625 d̂ 0.6855 0.6656 0.6394 0.6401

H0 : d̂ = 1 -1.6344 -1.7375 -1.8739 -1.8699

↵=0.65 d̂ 0.6945 0.6804 0.6458 0.6429

H0 : d̂ = 1 -1.7011 -1.7792 -1.9721 -1.9884
Seattle - 199 obs.

↵=0.575 d̂ 0.6339 0.5603 0.6334 0.4516

H0 : d̂ = 1 -1.6373 -1.9664 -1.6394 -2.4526

↵=0.6 d̂ 0.5659 0.5407 0.6378 0.4401

H0 : d̂ = 1 -2.0818 -2.2028 -1.7368 -2.6850

↵=0.625 d̂ 0.6056 0.5471 0.6302 0.4599

H0 : d̂ = 1 -2.0496 -2.3533 -1.9216 -2.8066

↵=0.65 d̂ 0.6075 0.5309 0.6105 0.4502

H0 : d̂ = 1 -2.1853 -2.6116 -2.1686 -3.0609
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Figure 1: EIA PADDs, States and Cities
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Figure 2: Gasoline prices in PADDs
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Figure 3: EIA:States Trend
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Figure 4: EIA:Cities Trend

26



Appendix

A Long Memory Models

In this subsection we briefly introduce fractionally integrated/long memory models
and their estimation. Granger and Joyeux (1980) suggest that a stationary time series
{yt} has long memory if there is a non zero d 2 (�0.5, 0.5) such that its spectral
density obeys a power law f(�) ⇠ k��2d as � ! 0+. Clearly, as � ! 0, f(�) ! 1,
if d > 0 or f(�) ! 0, if d < 0. In the case where d = 0, {yt} will have short
memory and (0 < f(0) < 1) such as in the case of all the stationary and invertible
ARMA processes. Moreover, HoskNG (1981) identified the relationship between long
memory models and fractional di↵erencing, proposing a class of models denominated
fractional ARIMA, where the degree of di↵erencing can be any real number. The
simplest of these is the fractionally integrated noise or ARIMA(0, d, 0) defined for
d > �1, that is:

�dyt = ✏t; ✏ ⇠ iid(0, �2), and, �d = (1� L)d. (6)

To obtain an ARIMA(0, d, 0) for d that lies outside the range (�0.5, 0.5), it is suf-
ficient to start with an ARIMA(0, d̄, 0), with d̄ 2 (�.05, 0.5), such that d � d̄ is an
integer. If d > 0.5, we need to integrate d � d̄ times, if d < 0.5, we di↵erence d � d̄
times. The result will be an ARIMA(0, d, 0) which however will not be stationary if
d � 0.5.

The more general fractional ARIMA (p,d,q)can be written as:

�(L)�dyt = ✓(L)✏t, (7)

where ✏t is as before a zero mean white noise process, d 2 (�0.5, 0.5), and �(L)
and ✓(L) are polynomial in the lag operator or order p and q respectively. The
ARIMA(p,d,q) can also be written as

�(L)yt = ✓(L)(��d✏t), (8)

showing that the ARIMA(p,d,q) can be thought of as an ARMA(p,q) driven by
a fractionally integrated ARIMA(0,d,0) noise, ��d✏t. The spectral density for the
ARIMA(p,d,q) is:

f(�) =
�2
✏

2⇡

��✓(e�i�)/�(e�i�)
��2 ��1� e�i�

���2d
(9)

and as � ! 0+

f(�) =
�2
✏

2⇡
|✓(1)/�(1)|2 |�|�2d . (10)

Again, if d 6= 0, then yt is a long memory process and it can be shown that its
autocovariances obey the power law cr ⇠ kr2d�1 as r ! 1.
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Alternatively we could write the spectral density of the fractional ARIMA(p,d,q)
as:

f(�) =
�2

2⇡

��1� e�i�
���2d

g(�) (11)

where g(�) is the spectral density of an ARMA(p,q).2

The ARMA parameters as well as d are unknown and must be estimated. As-
suming that p and q are known and that {✏t} are Gaussian, we can use maximum
likelihood estimation (MLE) to estimate the ARMA parameters as well as d. However,
the MLE of this type of model requires O(n3) operations to evaluate the likelihood
function. To avoid such intense computation, Fox and Taqqu (1986) suggest using
the Whittle approximation to the likelihood function, that is:

� 2 log l(⇥) ⇡
n/2X

j=1

[log f⇥(�j) + Ij/f⇥(�j)], (12)

where ⇥ is the vector of ARMA parameters plus d, and f⇥(�) is the spectral density of
the ARIMA(p,d,q) process. The Whittle estimator (WE) is obtained by minimisation
with respect to ⇥. Fox and Taqqu (1986) show that the Whittle estimator of ⇥, say
⇥̂W , is asymptotically equivalent to the exact MLE assuming that d > 0, the model
is correct, and the order of p and q is known.

However, p and q are unknown, and as a result both the ML and W estimators
of d will be asymptotically biased. The same problem will arise if g(�) is not ARMA
but it is assumed that it is.

To overcome the problem, Robinson (1995) proposed a semi-parametric Gaussian
estimator for d known as the Local Whittle (LW) estimator, which is developed under
the assumption that yt is stationary and its spectral density behaves like G��2d as
� ! 0+. The frequency domain Gaussian likelihood in the vicinity of the origin is:

Qm(G, d) = m�1
mX

j=1

[log(G��2d
j ) +

�2d
j

G
I(�j)], (13)

where as before m < n is an integer controlling the number of frequencies included in
the local likelihood. Estimates of G and d are then obtained through the minimisation
of Qm(G, d) such that:

(Ĝ, d̂) = arg minG2(0,1),d2[�1,�2] Qm(G, d), (14)

2The fractional ARIMA(p,d,q) is particularly convenient as it can be used to describe both the
long and the short term behaviour of the yt. In fact d determines the long term correlations and the
behaviour of the spectral density near zero frequency and the AR and MA parameters describe the
short term correlations and shape the spectral density for frequencies not near zero, independently
from d.
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with �1 and �2 are numbers such that �1 < �1 < �2 < 1/2. Concentrating the
likelihood with respect to G, it is found that d̂ satisfies:

arg mind2[�1,�2] log Ĝ(d)� 2d
1

m

mX

j=1

log �j, Ĝ(d) = m�1
mX

j=1

�2d
j I(�j). (15)

Under appropriate assumptions and conditions, and for d0 2 (�1/2, 1/2), Robin-
son(1995) and Shimotsu and Phillips (2006) show that

p
m(d̂� d0) ! N(0, 1/4).

Phillips and Shimostu (2004), among others, show that when d > 1/2 the LW
estimator exhibits non standard behaviour. Although it is consistent for d 2 (1/2, 1]
and asymtotically normal for d 2 (1/2, 3/4), the LW has non normal asymptotic
distribution for d 2 [3/4, 1], and d > 1, but also converges to 1 in probability and is
inconsistent.

The solution to the problem is provided by Shimotsu and Phillips (2004, 2006)
who developed the Exact Local Whittle (ELW) estimator and its variants, whose
asymptotics are based on the exact frequency domain (or its estimate which will give
rise to FELW estimator) of the data generating process which is obtained from the
minimisation of the objective function:

Q⇤
m(G, d) = m�1

mX

j=1

[log(G��2d
j ) +

�2d
j

G
I(1�L)dy(�j)]. (16)

The ELW is computationally more demanding than LW but is shown to be consistent
and asymptotically normally distributed for any value of d and therefore is valid under
a wider range of cases.

Shimotsu and Phillips (2006) discuss the importance of the choice ofm, explaining
that as in the case of LW and ELW estimation, m has to grow fast for d̂ to be
consistent, but also that a too large value of m may induce a bias to the estimator
from the short run dynamics. A rule of thumb suggests that within m = n↵, we
should choose a value of ↵ around 0.6 (see Shimotsu and Phillips 2006). As we use
LW, ELW and FELW to estimate d̂ and perform the test H0 : d̂ = 1 vs HA : d̂ < 1 for
all our series, we derive the exact distribution of the LW, ELW and FELW estimators
for n=200 and di↵erent values of ↵ in the interval [0.575, 0.65] as displayed in Table
1A in Appendix. Notice that we shall only be concerned with the hypothesis that
d̂ = 1 (the series tested has a unit root) against the one sided alternative that d̂ < 1
(the series has long memory but is mean reverting and possibly covariance stationary).
That implies that the relevant 90% and 95% critical values are the ones corresponding
to the 0.1 and 0.05 quantiles respectively for the di↵erent values of ↵.
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Table 1A Quantiles of: H0 : d̂ = 1, n=200, ↵ 2 {0.575; 0.6; 0.625; 0.65}
Quantile LW ELW FELW FELW dt

↵=0.575
0.025 -1.3675 -1.4633 -1.3909 -1.6551
0.050 -1.1191 -1.2203 -1.2013 -1.3535
0.100 -0.8713 -0.9189 -0.9233 -0.9553
0.250 -0.4624 -0.4650 -0.4632 -0.5053
0.500 -0.0649 -0.0251 -0.0239 -0.0405
Mean -0.0942 -0.0530 -0.0479 -0.0811
St. Dev. 0.6014 0.6726 0.6520 0.6979
↵=0.6
0.025 -1.3306 -1.3962 -1.3474 -1.6071
0.050 -1.1066 -1.1415 -1.1397 -1.2028
0.100 -0.8452 -0.8676 -0.8633 -0.9085
0.250 -0.4487 -0.4446 -0.4426 -0.4669
0.500 -0.0592 -0.0016 -0.0040 -0.0209
Mean -0.0875 -0.0295 -0.0253 -0.0530
St. Dev. 0.5855 0.6533 0.6385 0.6780
↵=0.625
0.025 -1.3427 -1.3672 -1.3577 -1.5217
0.050 -1.0949 -1.1116 -1.1165 -1.1533
0.100 -0.8346 -0.8380 -0.8409 -0.8917
0.250 -0.4579 -0.4312 -0.4310 -0.4598
0.500 -0.0752 0.0034 0.0054 -0.0084
Mean -0.0989 -0.0166 -0.0143 -0.0376
St. Dev. 0.5815 0.6535 0.6445 0.6753
↵=0.65
0.025 -1.2798 -1.3083 -1.3175 -1.3563
0.050 -1.0617 -1.0792 -1.0726 -1.1109
0.100 -0.8415 -0.8192 -0.8185 -0.8532
0.250 -0.4644 -0.4034 -0.4031 -0.4254
0.500 -0.0987 0.0106 0.0127 0.0048
Mean -0.1188 -0.0094 -0.0078 -0.0250
St. Dev. 0.5564 0.6299 0.6235 0.6441
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